首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一道2010年瑞士数学奥林匹克不等式的证明   总被引:1,自引:0,他引:1  
一道2010年瑞士数学奥林匹克试题如下:已知x、y、z>0,xyz=1,求证:(x+y-1)2/z+(y+z-1)2/x+(z+x-1)2/y≥x+y+z.证因为x、y、z>0,  相似文献   

2.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

3.
对于含多个字母的因式分解题,大多数学生都不知如何下手求解,在此,本人给出一种比较实用的方法,那就是以题中某个字母为主元,其他字母看成是常数,这样将多元问题变为一元问题,问题便轻易解决,下面举例说明.例1分解因式2x~2-5xy+2y~2+7x-5y+3.解:视x为未知元,变形,则有:原式=2x~2+(7-5y)x+(2y~2-5y+3)=2x~2+(7-5y)x+(y-1)(2y-3)=[2x-(y-1)][x-(2y-3)]  相似文献   

4.
用判别式解题,由于诸种因素的相互制约,稍不留意.就出差错,今给出几例,剖析如下. 例1 求函数y=(x~2-x-1)/(x~2-x 1)的值域. 错解:将原式化为(y-1)x~2-(y-1)x y 1=0,∴ x∈R,故有N=[-(y-1)]~2-4(y-1)(y 1)≥0,解得-(5/3)≤y≤1.∴原函数的值域为-5/3≤y≤1. 剖析:上述解答的错误源于忽略了当y=1时,方程(y-1)x~2-(y-1)x y 1=0无解的情况. 正解:∵x~2-x 1=(x-1/2)~2 3/4≠0.∴原等式可化为(y-1)x~2-(y-1)x y 1=0.∵x∈R,故有△=[-(y-1)]~2-4(y-1)(y 1)≥0.解得-5/3≤y≤1.∵ 当y=1时.方程(y-1)x~2-(y-1)x y 1=0无解,∴y≠1.故原函数的值域是-5/3≤y<1.  相似文献   

5.
我们知道,转化是解题过程的一个重要环节。如何实现转化呢?构造辅助方程可算一个有力的措施。下面通过若干例子加以说明。一、在代数求值中的应用 [例1] 求值:(20+14 2~(1/2))~(1/3)+(20-14 2~(1/2))~(1/3)。解:令原式=x,得辅助方程 x=(20+14 2~(1/2))~(1/3)+(20-14 2~(1/2))~(1/3) 立方,得x~3-6x-40=0 (x-4)(x~2+4x+10)=0 ∵x~2+4x+10>0 ∴x-4=0,x=4。故原式等于4。  相似文献   

6.
<正>1 题目呈现设x,y,z∈R,且x+y+z=1.求(x-1)~2+(y+1)~2+(z+1)~2的最小值.(2019年全国卷Ⅲ选考题)2 解法展现2.1 切入点1 运用均值不等式解法1 [(x-1)+(y+1)+(z+1)]~2=(x-1)2+(y+1)2+(z+1)~2+2(x-1)(y+1)+2(y+1)(z+1)+2(z+1)(x-1)≤3[(x-1)~2+(y+1)~2+(z+1)~2].  相似文献   

7.
题目 已知x、y、z>0,xyz=1.求证:(x+y-1)2/z+(y+z-1)2/x+(z+x-1)2/y≥x+y+z. 在文[1]中,作者给出的证法虽好,但不利于推广.本文中笔者给出此不等式的四种证法及推广.  相似文献   

8.
这些习题译自苏联《中学数学》杂志,原来是给9到10年级的师生选用的。我们选编其中一部分,供读者参考。①解不等式:(x~(4/x)-1)/(x~(2/x)-2)>0 (x>0)。解:令x~(1/x)=y,(y>0),则原不等式可写成: ((y-1)(y+1)(y~2+1))/(y-2~(1/2)(y+2~(1/2)>0。  相似文献   

9.
<正>在一次九年级数学考试中,试卷有这样一道试题:若W=2x2-4xy+5y2+4x-2y+3,且x,y为实数,则W的最小值是__.不少同学是这样解答的:W=(x2-4xy+4y2)+(x2+4x+4)+(y2-2y+1)-2=(x-2y)2+(x+2)2+(y-1)2-2.∵(x-2y)2≥0,(x+2)2≥0,(y-1)2≥0,∴W的最小值是-2.这是一道二元函数最值问题,是典型的代数推理题.解答时,  相似文献   

10.
运用对称观点分析、解题常使某些数学问题的解决快捷、简明,值得探讨,本文仅以几例说明。一利用图形的对称性质例1 求f(x)=(x~2-4x+8)~(1/2)+(x~2+6x+25)~(1/2)的最小值。解:将原函数变为: f(x)=((x-2)~2+(2-0)~2)~(1/2)+((x+3)~2)+[2-(-2)]~2)~(1/2) 令y=2 于是问题转化为在直线y=2上求一点,使得这点到A(2,0),B(-3,-2)的距离之和为最小。由平几知识知:取A关于y=2的对称点A′(2、4)。 f_(min)(x)=|A′B|=61~(1/2) 例2 f(x)满足条件f(1-x)=f(1+x),且知f(x)在定义域内有11个根、求各根之和。由f(1-x)=f(1+x)知f(x)的图象关于直线x=1对称。由f(x)与x轴有11个交点,由对称性知:  相似文献   

11.
多元函数最值问题不仅蕴含了丰富的数学思想和方法,而且有利于培养学生联想、化归的解题能力,下面通过例题介绍几种求这类最值问题的方法。一、配方法例1:求函数 f(x,y)=x~2-2xy 6y~2-14x-6y 72的最小值。解:f(x,y)=x~2-2xy 6y~2-14x-6y 72=(x-y-7)~2 5(y-2)~2 3≥3因此当 x-y-7-y-2=0即x=9,y=2时,f(x,y)的最小值为3  相似文献   

12.
我们知道几乎每一个数学概念和每一 种数学运算都与零有关,零在数学领域中常 扮演着举足轻重的角色.在解题过程中,若对 零丧失警惕,就容易走入误区,掉进陷阱,造 成解题失误.因此,我们在解题时就应睁大眼 睛,增强警惕性,从而排除陷阱,顺利到达正 确解题的目的地. 陷阱之一 忽视分母不能为零 【例1】 求和Sn=(x+1y)+(x2+1y2) +(x3+1y3)+…+(xn+1yn). 错解:Sn=(x+x2+…+xn)+(1y+ 1 y2+…+1yn) =x(1-xn)1-x+ 1 y(1-1yn) 1-1y =x-xn+11-x+yn-1yn(y-1) 剖析:因为当分母为零,即当x=1或 y=1时,不能表达成上述…  相似文献   

13.
求函数f(x,y)=x~2 y~2在条件x y=1下的最小值,通常有如下几种解法: 解法一 应用一元函数的配方法 由条件x十y=1,得y=1—x,将其代入f(x,y)=x~2 y~2,得到一元函数 f(x)=x~2 (1—x)~2=2x~2-2x 1=2(x-1/2)~2 1/2(1)因为(x-1/2)~2≥0,故由(1)式知,当x=1/2时,函数f(x)取最小值。将x=1/2代入y-1—x,得y=1/2。因此,当x=1/2,y=1/2时,函数f(x,y)-x~2 y~2在条件x y=1下取最小值(1/2)~2  相似文献   

14.
<数学教学>2002年第1期刊出了如下一个代数不等式问题. 问题554已知x、y∈R,求证:√x2+y2+√(x-1)2+y2+√x2+(y-1)2≥√2/2(√3-1). 在第2期上给出的解答,运用了单位复数及关于复数模的不等式.本文对(1)先给出一个更为简洁的证明,再作进一步的探讨.  相似文献   

15.
例解方程 4(x-2)~(1/2)+(y-1)~(1/2)=28-36/(x-2)~(1/2)-4/(y-1)~(1/2)。解:原方程可整理为(4(x-2)~(1/2)+36/(x-2)~(1/2))+((y-1)~(1/2)+4/(y-1)~(1/2))=28。∵4(x-2)~(1/2)>0,36/(x-2)~(1/2)>0,且4(x-2)~(1/2)·36/(x-2)~(1/2)=44,为定值,∴当4(x-2)~(1/2)=36/(x-2)~(1/2)时,即x=11时,4(x-2)~(1/2)+36/(x-2)~(1/2)有最小值24。同理,当(y-1)~(1/2))=4/(y-1)~(1/2)),即y=5时  相似文献   

16.
有条件限制的双变元取值问题,涉及领域宽,知识面广,需要善于转化,可以通过消元转化为函数求值域问题,但是当题目具有一定特殊形式对,也可通过另外两种常用方法转化.一、消元变函数例1 已知3x~2+2y~2=6x,求 u=x~2+y~2的取值范围.分析:为了求出 u 的范围,需将变量 x,y 用一个变量 x 表示出 u,此时要注意 x 的范围.解:由3x~2+2y~2=6x,得y~2=(1/2)(6x-3x~2)∵y~2≥0,∴x∈[0,2]u=x~2+y~2=x~2+(1/2)(6x-3x~2)=-(1/2)(x-3)~2+(9/2)结合二次函数的图象可知,u∈[0,4]  相似文献   

17.
对于比较复杂的多项式分解因式,运用换元法可使多项式中的数或式的关系明朗化,使问题化难为易、简洁清晰.例1 分解因式(x~2+x+3)(x~2-6x+3)+12x~2.解设 x~2+3=y,则原式=(y+z)(y-6x)+12x~2=y~2-5xy+6x~2=(y-2x)(y-3x)=(x~2-2x+3)(x~2-3x+3).例2 分解因式(x-1)(x-2)(x-3)(x-4)-120.解由于(x-1)(x-4)=x~2-5x+4,(x-2)(x-3)=x~2-5x+6,  相似文献   

18.
换元法是一种基本的数学思想,在中学数学中有较多的应用.它的解题思想就是通过代换,把复杂的代数式、方程、解析式化为较简单的形式来解决.有时会使解题十分简明。但代换不当易铸成大错,这在教学中是很值得注意的。例1 已知:x y z=1,求证:x~2 y~2 z~2≥1/3。证明:设x=1/3-t,y=1/3-2t,x y z=1,求证:x~2 x=1/3-t,y=1/3-2t,  相似文献   

19.
因忽略题中的隐晦条件而造成解题失误,是许多同学解题时易犯的一种错误。例 已知实数x,y满足等式x~2 4y~2-4x=0,求x~2-y~2的最大值和最小值。 有的同学求解如下: 解:∵ x~2 4y~2-4x=0, ∴ y~2=x-1/4x~2。 (1) ∴ x~2-y~2=x~2-(x-1/4x~2) =5/4x~2-x=5/4(x-2/5)~2-1/5 (2) 由(2)式可知,x~2-y~2没有最大值;当x=2/5时,x~2-y~2有最小值,其最小值为-1/5。  相似文献   

20.
求函数 y=x+(1-2x)~(1/2)的值域,一般用如下方法:由函数式得 y-x=(1-2x)~(1/2)(1)两边平方得 y~2-2xy+y~2=1-2x(2)整理得 x~2-2(y-1)x+(y~2-1)=0 (3)∵ x 是实数,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号