首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
解分母部分含有根式的无理方程,通常的方法是化无理为有理,化分式为整式,但有时运算量较大,笔者结合自己的教学实践,归纳了这类无理方程解法的一些方法和技巧。一利用函数的定义域和值域 [例1] 解方程 1/((x~2)+5x-14-1)~(1/2)-1/(2-(x+7)~(1/2)=((2-x+5)~(1/2)))/(5~(1/2))-1/(5~(1/2))分析,观察三个根式内部的关系:x~2+5x-14=(x+7)(x-2),试着先讨论末知数x的取值范围。  相似文献   

2.
(2)无理方程 若方程中含无理式并且无理式中有未知数,这样的方程叫做无理方程.如√x=2x-6。  相似文献   

3.
初中数学中的无理方程解法常见有以下几种: 一、直接平方法例1 (2001年上海市中考题)解方程:x+2~(1/2)=-x析解:将方程两边直接平方得x+2=x2, 解得x1=一1,x2=2(增根,舍去) 所以,原方程根为.x=-1.  相似文献   

4.
本文介绍解无理方程的八种方法,供读者参考。 一、观察法。不解方程,用算术根的概念及不等式的性质判断方程的解。 例1.解下列方程 (1)(2-x)~(1/2) (x-3)~(1/2)=4; (2)(x~2-6x 9)~(1/2) 解(1) 由 2-x≥0,x-3≥0有x≤2且x≥3,无解。 (2)(x~2-6x 9)~(1/2)=[(x-3)~2]~(1/2)=|x-3|。原方程为 |x-3|=x-3。 解为x≥3。  相似文献   

5.
在进行二次根式的运算时 ,往往需要把分母有理化 ,而分母有理化的方法则是把分子、分母同乘以分母的有理化因式 ,因此分母有理化的关键是找分母的有理化因式。我们清楚 ,两个含有二次根式的代数式相乘 ,如果它们的积不含有二次根式 ,就说这两个代数式互为有理化因式。由此可知 :1. a与 a互为有理化因式例 1.把下列各式分母有理化 :112;2 x+ 1x- 1(x>1)。解 :112=22· 2=22 ;2 x+ 1x- 1=x+ 1· x- 1x- 1· x- 1=x2 - 1x- 1。2 .a+ b与 a- b互为有理化因式例 2 .分母有理化 :n+ n2 - 4+ 2n- n2 - 4+ 2(n>2 )。解 :n+ n2 - 4+ 2n- n2 - 4+ 2= …  相似文献   

6.
换元法是一种重要的数学方法,在解无理方程中也常常应用.这里举数例,观其运用规律.一、形如(ax+b)~(1/2)=cx+d 的方程,可作y=(ax+b)~(1/2)代换例1 解方程(3x-8)~(1/2)=x-4.解令 y=(3x-8)~(1/2),则 y~2=3x-8,即 x=((y~2+8)/3),  相似文献   

7.
中学代数中所研究的无理方程,主要是在实数集合范围内仅含有限个二次无理式的无理方程.其解法是通过移项,把方程的两边同时平方,从而把无理方程变形为有理方程来解.这种解法依据如下定理:定理如果 f(x)和 g(x)都是关于 x 的代数式,那么方程f~2(x)=g~2(x)是方程f(x)=g(x)的结果.  相似文献   

8.
关于形如(αx+b)~(1/2)±(cx+d)~(1/2)=k(α、b、c、d、k为常数)的方程,各种杂志上都有文章,讨论它的多种解法.本文介绍一种用平均值换元的解法. 例1 解方程(2x-4)~(1/2)-(x+5)~(1/2)=1(九年义务教育教材《代  相似文献   

9.
解无理方程,通常是采用两边平方的办法。但这样做往往要进行两次以上的平方,出现高次方程,给解方程带来困难。本文介绍另一种解法——“平方差法”。先看例1 解方程(x~2+x-2)~(1/2)-(x~2+x-5)~(1/2)=1 (1) 解:由恒等式((x~2+x-2)~(1/2))~2-((x~2+x-5)~(1/2))~2=3 (2) (2)÷(1)得(x~3+x-2)~(1/2)+(x~2+x-5)~(1/2)=3 (3) (1)+(3)化简得(x~2+x-2)~(1/2)=2 (4) 两边平方整理得x~2+x-6=0 解得x_1=2,x_2=-3。经检验知,x_1=2,x_2=-3都是原方程的根。用这种方法解无理方程,虽然避免了高次方程的出现,但是有可能遗根。请看例2 解方程(x~2+5x-6)~(1/2)+2=(x~2+x-2)~(1/2)+22~(1/2) 解:将原方程变形为(x~2+5x-6)~(1/2)-(x~2+x-2)~(1/2)  相似文献   

10.
初中《代数》第三册P135习题7(2)有这样一道题:解方程。(x+2/x-1)~(1/2)+(x-1/x+2)~(1/2)=5/2.按照常规方法求解,首先需把方程左边一项移到右端,再将两边平方,消去一个根号;合并整理后再次平方,转化为一元二次方程,从而求得原方程的解.  相似文献   

11.
初中《代数》第三册11.9,在解无理方程时指出:“为了把无理方程变形为有理方程,需要将方程的两边都乘方相同的次数,这样就有产生增根的可能。”怎样引导学生对上述这句话进行深化理解呢?我们从以下三个方面作了补充说明: 1.将方程的两边都平方或偶次乘方时,增根赤源于乘数的有理化因式的零点。例1 解方程(x-2)~(1/2)=8-x ①解:方程两边平方,得x-2=(8-x)~2 ②即x~2-17x+66=0,∴x_1=6,x_2=11。  相似文献   

12.
一元二次方程是贯穿于初、高中数学的重要知识点,也是中考命题的“热点”,故本文以一些典型题目为例,介绍一元二次方程学习中的要点.一、掌握一元二次方程的三种解法要牢固掌握一元二次方程的配方法、因式分解法和公式法三种解法.例1用换元法解方程2x2-2x2+3x-1姨=3-3x.分析:这是一个无理方程.初中阶段不学习,但用初中知识也可解.解法1(配方法)设y=2x2+3x-1姨,显然y≥0.原方程即为y2-y-2=0.∴(y-12)2=94.解得y1=2,y2=-1(舍去)∴2x2+3x-1=4,解得x1=1,x2=-52.解法2(因式分解法)同解法1,得y2-y-2=0,即(y-2)(y+1)=0.∴y1=2,y2=-1(舍去).下同解法…  相似文献   

13.
构造法解题作为创造性思维能力的体现,愈来愈受到推崇。一些无理方程通过构造法来解,简捷明了,自然流畅,它能较好地避免常规解法常会带来的方程高次化问题。请看下列各例。 例1 解方程 (x-3)(1/2) (x-4)(1/2)=10(1/2) 3 (1) 解 (构造有理化方程)设原方程左、右  相似文献   

14.
1.方程组{ax+y=a~2 x+ay=1 有多少解? 2.方程组{ax+y+z=1 x+ay+z=a x+y+az=a~2 有多少解?3.解方程|x-1|+|x-2|+|x-3|=x。 4.解方程(x+3-4(x-1)~(1/2)~(1/2)+(x+8-6(x-1)~(1/2))~(1/2)=1。5.下列方程是否有实根?  相似文献   

15.
思维是解题过程的重要环节,技巧是选择解题方式的捷径,以下几种特殊分式方程的解法,供同学们参考。一、利用分母之差相等巧解例1 解方程1/(x-2)+1/(x-6)=1/(x-7)+1/(x-1). 分析:本题若按原方程两边同时通分,将出现高次方程,这样运算量大,解起来比较麻烦。通过观察,我们不难发现,方程有一个特点(x  相似文献   

16.
在代数式运算中,对含无理式的分式,一般要进行有理化变形,使分母(或分子)不再含无理式,这就是有理化分母(分子)的问题。解决这个问题的关键是求分母(分子)的有理化因子。本文先介绍几种常用的求有理化因子的方法;然后利用对称函数理论,给出求有理化因子的一般方法;最后就可有理化的问题进行一些讨论。 (一) Ⅰ.有些无理式可利用代数恒等式求其有理化因子。例如表达式 S=(X~pY~q…Z~r)/(1/n)(n≥2为自然数,X、Y、Z为有理式,p、q、r为小于n的自然数)的有理化因子为  相似文献   

17.
第一试一、解方程:(x+3)~(1/2)=|x-2|-1.解:先限定 x≥2:这时|x-2|=x-2,原方程化为(x+3)~(1/2)=x-3,x+3=x~2-6x+9,∴x~2-7x+6=0,(x-6)(x-1)=0,∴x_1=6,x_2=1(x_2不合我们的限定,舍  相似文献   

18.
设一元二次方程ax2+bx+c=0的两根是x1、x2,要求不解方程,我们能够熟练地求出关于x1、x2的对称代数式(如x_1~2+x_2~2、x_1~3+x_2~3、1/x1+1/x2、(x1-x2)2、|x1-x2|等)的值.对含x1、x2的非对称代数式的值的求法,现举例介绍三种转化的方法:例设x1、x2中二次方程x2+x-3=0的两个根,那么x_1~3-4x_2~2+19的值是( )(1996年全国初中数学联赛)(A)- 4.(B)8.(C)6.(D)0.解法1:(配偶转化法):设A=x_1~3-4x_1~2+19,B=x_2~3-4x_1~2+19.∵x1、x2是方程x2+x-3=0的两根,∴x1+x2=-1,x1·x2=-3.  相似文献   

19.
一、无理方程的增根出现的两种情况解无理方程时,一般采用方程两边分别同次乘方的方法,将其变形为有理方程,进而求出根来。方程两边同次乘方,实际上就是方程两边同乘以某个含有未知数的无理式(称之为有理化因式)。因此,有产生增根的可能。下面我们来讨论无理方程增根出现的两种情况。为确定起见,以仅含有二次根式的无理方程为例。自然,我们在实数范围内求解无理方程。一种情况是增根作为有理化因式等于零的根出现的。比如,无理方程  相似文献   

20.
移项是解方程的一个重要步骤,灵活运用移项的方法可以使运算简化.现举几例说明.例1解方程:3-x=4x-2.解法一:移项,得-x-4x=-2-3.合并同类项,得-5x=-5.系数化为1,得x=1.解法二:移项得:3+2=4x+x.合并同类项,得5=5x.系数化为1,得x=1.同学们把两种解法比较一下,哪种方法更好些?显然解法二更好,这样可避免符号出现差错.例2解方程:x-13〔x-13(x-9)〕=19(x-9).分析:先去中括号,把右边的19(x-9)作为一个整体移到左边,这样比较简便.解:去中括号,得x-13x+19(x-9)=19(x-9).移项,得x-13x+19(x-9)-19(x-9)=0.合并同类项,得23x=0.数学系数化为1,得x=0.例3已…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号