首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoscopically projected three-dimensional (3D) visualization technology may have significant disadvantages for students with lower visual-spatial abilities despite its overall effectiveness in teaching anatomy. Previous research suggests that stereopsis may facilitate a better comprehension of anatomical knowledge. This study evaluated the educational effectiveness of stereoscopic augmented reality (AR) visualization and the modifying effect of visual-spatial abilities on learning. In a double-center randomized controlled trial, first- and second-year (bio)medical undergraduates studied lower limb anatomy with stereoscopic 3D AR model (n = 20), monoscopic 3D desktop model (n = 20), or two-dimensional (2D) anatomical atlas (n = 18). Visual-spatial abilities were tested with Mental Rotation Test (MRT), Paper Folding Test (PFT), and Mechanical Reasoning (MR) Test. Anatomical knowledge was assessed by the validated 30-item paper posttest. The overall posttest scores in the stereoscopic 3D AR group (47.8%) were similar to those in the monoscopic 3D desktop group (38.5%; P = 0.240) and the 2D anatomical atlas group (50.9%; P = 1.00). When stratified by visual-spatial abilities test scores, students with lower MRT scores achieved higher posttest scores in the stereoscopic 3D AR group (49.2%) as compared to the monoscopic 3D desktop group (33.4%; P = 0.015) and similar to the scores in the 2D group (46.4%; P = 0.99). Participants with higher MRT scores performed equally well in all conditions. It is instrumental to consider an aptitude–treatment interaction caused by visual-spatial abilities when designing research into 3D learning. Further research is needed to identify contributing features and the most effective way of introducing this technology into current educational programs.  相似文献   

2.
Three-dimensional (3D) digital anatomical models show potential to demonstrate complex anatomical relationships; however, the literature is inconsistent as to whether they are effective in improving the anatomy performance, particularly for students with low spatial visualization ability (Vz). This study investigated the educational effectiveness of a 3D stereoscopic model of the pelvis, and the relationship between learning with 3D models and Vz. It was hypothesized that participants learning with a 3D pelvis model would outperform participants learning with a two-dimensional (2D) visualization or cadaveric specimen on a spatial anatomy test, particularly when comparing those with low Vz. Participants (n = 64) were stratified into three experimental groups, who each attended a learning session with either a 3D stereoscopic model (n = 21), 2D visualization (n = 21), or cadaveric specimen (n = 22) of the pelvis. Medical and pre-medical student participants completed a multiple-choice pre-test and post-test during their respective learning session, and a long-term retention (LTR) test 2 months later. Results showed no difference in anatomy test improvement or LTR performance between the experimental groups. A simple linear regression analysis showed that within the 3D group, participants with high Vz tended to retain more than those with low Vz on the LTR test (R2 = 0.31, P = 0.01). The low Vz participants may be cognitively overloaded by the complex spatial cues from the 3D stereoscopic model. Results of this study should inform resource selection and curriculum design for health professional students, with attention to the impact of Vz on learning.  相似文献   

3.
Spatial visualization, the ability to mentally rotate three-dimensional (3D) images, plays a significant role in anatomy education. This study examines the impact of technical drawing exercises on the improvement of spatial visualization and anatomy education in a Neuroscience course. First-year medical students (n = 84) were randomly allocated into a control group (n = 41) or art-training group (n = 43). Variables including self-reported artistic drawing ability, previous technical drawing experience, or previous anatomy laboratory exposure were gathered. Participants who self-identified as artistic individuals were equally distributed between the two groups. Students in the art-training group attended four 1-hour sessions to solve technical drawing worksheets. All participants completed two Mental Rotations Tests (MRT), which were used to assess spatial visualization. Data were also collected from two neuroscience written examinations and an anatomical “tag test” practical examination. Participants in the art-training and control groups improved on the MRT. The mean of written examination two was significantly higher (P = 0.007) in the art-training group (12.95) than the control group (11.48), and higher (P = 0.027) in those without technical drawing experience (12.44) than those with (11.00). The mean of the anatomical practical was significantly higher (P = 0.010) in those without artistic ability (46.24) than those with (42.00). These results suggest that completing technical drawing worksheets may aid in solving anatomy-based written examination questions on complex brain regions, but further research is needed to determine its implication on anatomy practical scores. These results propose a simple method of improving spatial visualization in anatomy education.  相似文献   

4.
Research on the benefits of visual learning has relied primarily on lecture‐based pedagogy, but the potential benefits of combining active learning strategies with visual and verbal materials on learning anatomy has not yet been explored. In this study, the differential effects of text‐based and image‐based active learning exercises on examination performance were investigated in a functional anatomy course. Each class session was punctuated with an average of 12 text‐based and image‐based active learning exercises. Participation data from 231 students were compared with their examination performance on 262 questions associated with the in‐class exercises. Students also rated the helpfulness and difficulty of the in‐class exercises on a survey. Participation in the active learning exercises was positively correlated with examination performance (r = 0.63, P < 0.001). When controlling for other key demographics (gender, underrepresented minority status) and prior grade point average, participation in the image‐based exercises was significantly correlated with performance on examination questions associated with image‐based exercises (P < 0.001) and text‐based exercises (P < 0.01), while participation in text‐based exercises was not. Additionally, students reported that the active learning exercises were helpful for seeing images of key ideas (94%) and clarifying key course concepts (80%), and that the image‐based exercises were significantly less demanding, less hard and required less effort than text‐based exercises (P < 0.05). The findings confirm the positive effect of using images and active learning strategies on student learning, and suggest that integrating them may be especially beneficial for learning anatomy. Anat Sci Educ 10: 444–455. © 2017 American Association of Anatomists.  相似文献   

5.
In recent decades, three-dimensional (3D) printing as an emerging technology, has been utilized for imparting human anatomy knowledge. However, most 3D printed models are rigid anatomical replicas that are unable to represent dynamic spatial relationships between different anatomical structures. In this study, the data obtained from a computed tomography (CT) scan of a normal knee joint were used to design and fabricate a functional knee joint simulator for anatomical education. Utility of the 3D printed simulator was evaluated in comparison with traditional didactic learning in first-year medical students (n = 35), so as to understand how the functional 3D simulator could assist in their learning of human anatomy. The outcome measure was a quiz comprising 11 multiple choice questions based on locking and unlocking of the knee joint. Students in the simulation group (mean score = 85.03%, ±SD 10.13%) performed significantly better than those in the didactic learning group, P < 0.05 (mean score = 70.71%, ±SD 15.13%), which was substantiated by large effect size, as shown by a Cohen’s d value of 1.14. In terms of learning outcome, female students who used 3D printed simulators as learning aids achieved greater improvement in their quiz scores as compared to male students in the same group. However, after correcting for the modality of instruction, the sex of the students did not have a significant influence on the learning outcome. This randomized study has demonstrated that the 3D printed simulator is beneficial for anatomical education and can help in enriching students’ learning experience.  相似文献   

6.
In the context of gross anatomy education, novel augmented reality (AR) systems have the potential to serve as complementary pedagogical tools and facilitate interactive, student-centered learning. However, there is a lack of AR systems that enable multiple students to engage in collaborative, team-based learning environments. This article presents the results of a pilot study in which first-year medical students (n = 16) had the opportunity to work with such a collaborative AR system during a full-day gross anatomy seminar. Student performance in an anatomy knowledge test, conducted after an extensive group learning session, increased significantly compared to a pre-test in both the experimental group working with the collaborative AR system (P < 0.01) and in the control group working with traditional anatomy atlases and three-dimensional (3D) models (P < 0.01). However, no significant differences were found between the test results of both groups. While the experienced mental effort during the collaborative learning session was considered rather high (5.13 ± 2.45 on a seven-point Likert scale), both qualitative and quantitative feedback during a survey as well as the results of a System Usability Scale (SUS) questionnaire (80.00 ± 13.90) outlined the potential of the collaborative AR system for increasing students' 3D understanding of topographic anatomy and its advantages over comparable AR systems for single-user experiences. Overall, these outcomes show that collaborative AR systems such as the one evaluated within this work stimulate interactive, student-centered learning in teams and have the potential to become an integral part of a modern, multi-modal anatomy curriculum.  相似文献   

7.
Three‐dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer‐based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. Anat Sci Educ 6: 216–224. © 2013 American Association of Anatomists.  相似文献   

8.
Anatomy is shifting toward a greater focus on adopting digital delivery. To advance digital and authentic learning in anatomy, a flipped classroom model integrating multimodal digital resources and a multimedia group assignment was designed and implemented for first-year neuroanatomy and third-year regional anatomy curricula. A five-point Likert scale learning and teaching survey was conducted for a total of 145 undergraduate health science students to evaluate students' perception of the flipped classroom model and digital resources. This study revealed that over two-thirds of participants strongly agreed or agreed that the flipped classroom model helped their independent learning and understanding of difficult anatomy concepts. The response showed students consistently enjoyed their experience of using multimodal digital anatomy resources. Both first-year (75%) and third-year (88%) students strongly agreed or agreed that digital tools are very valuable and interactive for studying anatomy. Most students strongly agreed or agreed that digital anatomy tools increased their learning experience (~80%) and confidence (> 70%). The third-year students rated the value of digital anatomy tools significantly higher than the first-year students (p = 0.0038). A taxonomy-based assessment strategy revealed that the third-year students, but not the first-year, demonstrated improved performance in assessments relating to clinical application (p = 0.045). In summary, a flipped anatomy classroom integrating multimodal digital approaches exerted positive impact upon learning experience of both junior and senior students, the latter of whom demonstrated improved learning performance. This study extends the pedagogy innovation of flipped classroom teaching, which will advance future anatomy curriculum development, pertinent to post-pandemic education.  相似文献   

9.
Binocular disparity provides one of the important depth cues within stereoscopic three-dimensional (3D) visualization technology. However, there is limited research on its effect on learning within a 3D augmented reality (AR) environment. This study evaluated the effect of binocular disparity on the acquisition of anatomical knowledge and perceived cognitive load in relation to visual-spatial abilities. In a double-center randomized controlled trial, first-year (bio)medical undergraduates studied lower extremity anatomy in an interactive 3D AR environment either with a stereoscopic 3D view (n = 32) or monoscopic 3D view (n = 34). Visual-spatial abilities were tested with a mental rotation test. Anatomical knowledge was assessed by a validated 30-item written test and 30-item specimen test. Cognitive load was measured by the NASA-TLX questionnaire. Students in the stereoscopic 3D and monoscopic 3D groups performed equally well in terms of percentage correct answers (written test: 47.9 ± 15.8 vs. 49.1 ± 18.3; P = 0.635; specimen test: 43.0 ± 17.9 vs. 46.3 ± 15.1; P = 0.429), and perceived cognitive load scores (6.2 ± 1.0 vs. 6.2 ± 1.3; P = 0.992). Regardless of intervention, visual-spatial abilities were positively associated with the specimen test scores (η2 = 0.13, P = 0.003), perceived representativeness of the anatomy test questions (P = 0.010) and subjective improvement in anatomy knowledge (P < 0.001). In conclusion, binocular disparity does not improve learning anatomy. Motion parallax should be considered as another important depth cue that contributes to depth perception during learning in a stereoscopic 3D AR environment.  相似文献   

10.
Teaching internal structures obscured from direct view is a major challenge of anatomy education. High-fidelity interactive three-dimensional (3D) micro-computed tomography (CT) models with virtual dissection present a possible solution. However, their utility for teaching complex internal structures of the human body is unclear. The purpose of this study was to investigate the use of a realistic 3D micro-CT interactive visualization computer model to teach paranasal sinus anatomy in a laboratory setting during pre-clinical medical training. Year 1 (n = 79) and Year 2 (n = 59) medical students undertook self-directed activities focused on paranasal sinus anatomy in one of two laboratories (traditional laboratory and 3D model). All participants completed pre and posttests before and after the laboratory session. Results of regression analyses predicting post-laboratory knowledge indicate that, when students were inexperienced with the 3D computer technology, use of the model was detrimental to learning for students with greater prior knowledge of the relevant anatomy (P < 0.05). For participants experienced with the 3D computer technology, however, the use of the model was detrimental for students with less prior knowledge of the relevant anatomy (P < 0.001). These results emphasize that several factors need to be considered in the design and effective implementation of such models in the classroom. Under the right conditions, the 3D model is equal to traditional laboratory resources when used as a learning tool. This paper discusses the importance of preparatory training for students and the technical consideration necessary to successfully integrate such models into medical anatomical curricula.  相似文献   

11.
A student's own body provides an often disregarded site of knowledge production and corporeal wisdom. Learning via cognitive processes anchored in physical movement and body awareness, known as embodied learning, may aid students to visualize structures and understand their functions and clinical relevance. Working from an embodied learning perspective, the current article evaluates the use of an offline physical learning tool (Anatomical Glove Learning System; AGLS) for teaching hand anatomy for clinical application in medical students. Two student samples (N1 = 105; N2 = 94) used the AGLS in two different ways. In the first sample, the AGLS was compared to a traditional approach using hand bones, models and prosected specimens. Secondly, the AGLS and traditional approach were combined. The evaluation consisted of three outcomes: short-term learning (post-test), medium-term applications (mock-objective structured clinical examination, MOSCE), and longer-term assessment (objective structured clinical examination, OSCE). Findings from the first sample indicated no significant differences between the AGLS and traditional laboratory groups on short- (F(1,78) = 0.036, P = 0.849), medium- (F(1,50) = 0.743, P = 0.393), or longer-term (F(1,82) = 0.997, P = 0.321) outcomes. In the second sample using the AGLS in combination with a traditional approach was associated with significantly better short-term post-test scores (F(2,174) = 5.98, P = 0.003) than using the AGLS alone, but demonstrated no effect for long-term OSCE scores. These results suggest an embodied learning experience alone does not appear to be advantageous to student learning, but when combined with other methods for studying anatomy there are learning gains.  相似文献   

12.
The novelty of three-dimensional visualization technology (3DVT), such as virtual reality (VR), has captured the interest of many educational institutions. This study’s objectives were to (1) assess how VR and physical models impact anatomy learning, (2) determine the effect of visuospatial ability on anatomy learning from VR and physical models, and (3) evaluate the impact of a VR familiarization phase on learning. This within-subjects, crossover study recruited 78 undergraduate students who studied anatomical structures at both physical and VR models and were tested on their knowledge immediately and 48 hours after learning. There were no significant differences in test scores between the two modalities on both testing days. After grouping participants on visuospatial ability, low visuospatial ability learners performed significantly worse on anatomy knowledge tests compared to their high visuospatial ability counterparts when learning from VR immediately (P = 0.001, d = 1.515) and over the long-term (P = 0.003, d = 1.279). In contrast, both low and high visuospatial ability groups performed similarly well when learning from the physical model and tested immediately after learning (P = 0.067) and over the long-term (P = 0.107). These results differ from current literature which indicates that learners with low visuospatial ability are aided by 3DVT. Familiarizing participants with VR before the learning phase had no impact on learning (P = 0.967). This study demonstrated that VR may be detrimental to low visuospatial ability students, whereas physical models may allow all students, regardless of their visuospatial abilities, to learn similarly well.  相似文献   

13.
A qualitative biomechanics (functional anatomy) course is a typical course in kinesiology curriculum. Most evidence suggests that biomechanics learning could be improved with the inclusion of laboratory experiences. However, implementing laboratories into biomechanics curriculum is difficult due to cost and time constraints. This study was conducted to evaluate whether hands-on activities in lecture improve qualitative biomechanics learning. A lecture format was compared to the same course with guided and unguided hands-on activities included during lecture. Test performance and student evaluations were compared between lecture formats to determine if hands-on experiences improve learning. The hands-on group performed better on the same test questions and they evaluated their overall course activities as beneficial to their learning. The findings suggest that guided hands-on experiences may improve learning compared to unguided activities. The hands-on experiences seem to provide an embodied cognitive learning experience, facilitating retention of learned material through three-dimensional and tactile mental representations. Findings from this research are currently shaping how biomechanics is taught to students at this university and could at other universities as well.  相似文献   

14.
The pterygopalatine fossa (PPF) is a bilateral space deep within the skull that serves as a major neurovascular junction. However, its small volume and poor accessibility make it a difficult space to comprehend using two-dimensional illustrations and cadaveric dissections. A three-dimensional (3D) printed model of the PPF was developed as a visual and kinesthetic learning tool for completely visualizing the fossa, its boundaries, its communicating channels, and its neurovascular structures. The model was evaluated by analyzing student performance on pre- and post-quizzes and a student satisfaction survey based on the five-point Likert scale. The first cohort comprised of 88 students who had never before studied the PPF. The second cohort consisted of 30 students who were previously taught the PPF. Each cohort was randomly divided into a control group who were provided with a half skull and an intervention group that were provided with the 3D printed model. The intervention group performed significantly better on the post-quiz as compared to the control group in cohort I (P = 0.001); while not significant, it also improved learning in cohort II students (P = 0.124). Satisfaction surveys indicated that the intervention group found the 3D printed model to be significantly more useful (P < 0.05) as compared to the half skull used by the control group. Importantly, the effect sizes for cohorts I and II (0.504 and 0.581, respectively) validated the statistical results. Together, this study highlights the importance of 3D printed models as teaching tools in anatomy education.  相似文献   

15.
Spatial ability is an important factor in learning anatomy. Students with high scores on a mental rotation test (MRT) systematically score higher on anatomy examinations. This study aims to investigate if learning anatomy also oppositely improves the MRT‐score. Five hundred first year students of medicine (n = 242, intervention) and educational sciences (n = 258, control) participated in a pretest and posttest MRT, 1 month apart. During this month, the intervention group studied anatomy and the control group studied research methods for the social sciences. In the pretest, the intervention group scored 14.40 (SD: ± 3.37) and the control group 13.17 (SD: ± 3.36) on a scale of 20, which is a significant difference (t‐test, t = 4.07, df = 498, P < 0.001). Both groups show an improvement on the posttest compared to the pretest (paired samples t‐test, t = 12.21/14.71, df = 257/241, P < 0.001). The improvement in the intervention group is significantly higher (ANCOVA, F = 16.59, df = 1;497, P < 0.001). It is concluded that (1) medical students studying anatomy show greater improvement between two consecutive MRTs than educational science students; (2) medical students have a higher spatial ability than educational sciences students; and (3) if a MRT is repeated there seems to be a test effect. It is concluded that spatial ability may be trained by studying anatomy. The overarching message for anatomy teachers is that a good spatial ability is beneficial for learning anatomy and learning anatomy may be beneficial for students' spatial ability. This reciprocal advantage implies that challenging students on spatial aspects of anatomical knowledge could have a twofold effect on their learning. Anat Sci Educ 6: 257–262. © 2013 American Association of Anatomists.  相似文献   

16.
Visual-spatial abilities are considered a successful predictor in anatomy learning. Previous research suggest that visual-spatial abilities can be trained, and the magnitude of improvement can be affected by initial levels of spatial skills. This case-control study aimed to evaluate (1) the impact of an extra-curricular anatomy dissection course on visual-spatial abilities of medical undergraduates and (2) the magnitude of improvement in students with initially lower levels of visual-spatial abilities, and (3) whether the choice for the course was related to visual-spatial abilities. Course participants (n = 45) and controls (n = 65) were first and second-year medical undergraduates who performed a Mental Rotations Test (MRT) before and 10 weeks after the course. At baseline, there was no significant difference in MRT scores between course participants and controls. At the end of the course, participants achieved a greater improvement than controls (first-year: ∆6.0 ± 4.1 vs. ∆4.9 ± 3.2; ANCOVA, P = 0.019, Cohen's d = 0.41; second-year: ∆6.5 ± 3.3 vs. ∆6.1 ± 4.0; P = 0.03, Cohen's d = 0.11). Individuals with initially lower scores on the MRT pretest showed the largest improvement (∆8.4 ± 2.3 vs. ∆6.8 ± 2.8; P = 0.011, Cohen's d = 0.61). In summary, (1) an anatomy dissection course improved visual-spatial abilities of medical undergraduates; (2) a substantial improvement was observed in individuals with initially lower scores on the visual-spatial abilities test indicating a different trajectory of improvement; (3) students' preferences for attending extracurricular anatomy dissection course was not driven by visual-spatial abilities.  相似文献   

17.
A novel three-dimensional tool for teaching human neuroanatomy   总被引:1,自引:0,他引:1  
Three‐dimensional (3D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross‐sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented and evaluated a new tool for teaching 3D neuroanatomy to first‐year medical students at Boston University School of Medicine. Students were randomized into experimental and control classrooms. All students were taught neuroanatomy according to traditional 2D methods. Then, during laboratory review, the experimental group constructed 3D color‐coded physical models of the periventricular structures, while the control group re‐examined 2D brain cross‐sections. At the end of the course, 2D and 3D spatial relationships of the brain and preferred learning styles were assessed in both groups. The overall quiz scores for the experimental group were significantly higher than the control group (t(85) = 2.02, P < 0.05). However, when the questions were divided into those requiring either 2D or 3D visualization, only the scores for the 3D questions were significantly higher in the experimental group (F1,85= 5.48, P = 0.02). When surveyed, 84% of students recommended repeating the 3D activity for future laboratories, and this preference was equally distributed across preferred learning styles (χ2 = 0.14, n.s.). Our results suggest that our 3D physical modeling activity is an effective method for teaching spatial relationships of brain anatomy and will better prepare students for visualization of 3D neuroanatomy, a skill essential for higher education in neuroscience, neurology, and neurosurgery. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

18.
Human cadaveric prosections are a traditional, effective, and highly appreciated modality of anatomy learning. Plastic models are an alternative teaching modality, though few studies examine their effectiveness in learning of upper limb musculoskeletal anatomy. The purpose of this study is to investigate which modality is associated with a better outcome, as assessed by students' performance on examinations. Overall, 60 undergraduate medical students without previous knowledge of anatomy participated in the study. Students were assigned into two groups. Group 1 attended lectures and studied from cadaveric prosections (n = 30) and Group 2 attended lectures and used plastic models in the laboratory (n = 30). A knowledge assessment, including examination with tag questions (spot test) and written multiple-choice questions, was held after the end of the study. Students' perceptions were also investigated via an anonymous questionnaire. No significant difference in students' performance was observed between the group using prosections and the group using plastic models (32.2 ± 14.7 vs 35.0 ± 14.8, respectively; P = 0.477). Similarly, no statistically significant difference was found regarding students' satisfaction from using each learning modality (P = 0.441). Plastic models may be a valuable supplementary modality in learning upper limb musculoskeletal anatomy, despite their limitations. Easy to use and with no need for maintaining facilities, they are highly appreciated by students and can be useful when preparing for the use of cadaveric specimens.  相似文献   

19.
Spatial abilities have been correlated to anatomy knowledge assessment and spatial training has been found to improve spatial abilities in previous systematic reviews. The objective of this systematic review was to evaluate spatial abilities training in anatomy education. A literature search was done from inception to 3 August 2017 in Scopus® and several databases on the EBSCOhost platform. Citations were reviewed and those involving anatomy education, an intervention, and a spatial abilities test were retained and the corresponding full-text articles were reviewed for inclusion. Before and after training studies, as well as comparative training programs, relating a spatial training intervention to spatial abilities were eligible. Of the 2,405 citations obtained, 52 articles were identified and reviewed, yielding eight eligible articles. Instruction in anatomy and mental rotations training were found to improve spatial abilities. For the seven studies retained for the meta-analysis that included the effect of interventions on spatial abilities test scores, the pooled treatment effect difference was 0.49 (95% CI [0.17; 0.82]; n = 11) improvement. For the two studies that included the practice effect on spatial abilities test scores in a control group, the pooled treatment effect difference was 0.47 (95% CI [−0.03; 0.97]; n = 2) improvement. In these two studies, the impact of the intervention on spatial abilities test scores was found despite the practice effect. Evidence was found for improvement of spatial abilities in anatomy education using instruction in anatomy and mental rotations training.  相似文献   

20.
Mercer University School of Medicine utilizes a problem-based learning (PBL) curriculum for educating medical students in the basic clinical sciences. In 2014, an adjustment was piloted that enabled PBL cases to align with their corresponding cadaver dissection that reviewed the content of anatomy contained in the PBL cases. Faculty had the option of giving PBL cases in sequence with the cadaveric dissection schedule (sequential group) or maintaining PBL cases out of sequence with dissections (traditional group). During this adjustment, students’ academic performances were compared. Students’ perception of their own preparedness for cadaveric dissection, their perceived utility of the cadaver dissections, and free-response comments were solicited via an online survey. There were no statistically significant differences when comparing student mean examination score values between the sequential and traditional groups on both multidisciplinary examinations (79.39 ± 7.63 vs. 79.88 ± 7.31, P = 0.738) and gross anatomy questions alone (78.15 ± 10.31 vs. 79.98 ± 9.31, P = 0.314). A statistically significant difference was found between the sequential group's and traditional group's (63% vs. 29%; P = 0.005) self-perceived preparedness for cadaveric dissections in the 2017 class. Analysis of free-response comments found that students in the traditional group believed their performance in PBL group, participation in PBL group and examination performance was adversely affected when compared to students with the sequential schedule. This study provides evidence that cadaveric dissections scheduled in sequence with PBL cases can lead to increased student self-confidence with learning anatomy but may not lead to improved examination scores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号