首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The teaching of gross anatomy has, for centuries, relied on the dissection of human cadavers, and this formative experience is known to evoke strong emotional responses. The authors hypothesized that the phenomenon of cadaver naming is a coping mechanism used by medical students and that it correlates with other attitudes about dissection and body donation. The authors developed a 33‐question electronic survey to which 1,156 medical students at 12 medical schools in the United States voluntarily responded (November 2011–March 2012). They also surveyed course directors from each institution regarding their curricula and their observations of students' coping mechanisms. The majority of students (574, 67.8%) named their cadaver. Students most commonly cited the cadaver's age as the reason they chose a particular name for the cadaver. A minority of the students who did not name the cadaver reported finding the practice of naming disrespectful. Almost all students indicated that they would have liked to know more about their donor, particularly his or her medical history. Finally, students who knew the birth name of the donor used it less frequently than predicted. The authors found that the practice of naming cadavers is extremely prevalent among medical students and that inventive naming serves as a beneficial coping mechanism. The authors suggest that developing a method of providing students with more information about their cadaver while protecting the anonymity of the donor and family would be useful. Anat Sci Educ 7: 169–180. © 2013 American Association of Anatomists.  相似文献   

2.
Cadaveric dissection offers an important opportunity for students to develop their ideas about death and dying. However, it remains largely unknown how this experience impacts medical students' fear of death. The current study aimed to address this gap by describing how fear of death changed during a medical gross anatomy dissection course and how fear of death was associated with examination performance. Fear of death was surveyed at the beginning of the course and at each of the four block examinations using three of the eight subscales from the Multidimensional Fear of Death Scale: Fear of the Dead, Fear of Being Destroyed, and Fear for the Body After Death. One hundred forty-three of 165 medical students (86.7%) completed the initial survey. Repeated measures ANOVA showed no significant changes in Fear of the Dead (F (4, 108) = 1.45, P = 0.222) or Fear for the Body After Death (F (4, 108) = 1.83, P = 0.129). There was a significant increase in students' Fear of Being Destroyed (F (4, 108) = 6.86, P < 0.0005) after beginning dissection. This increase was primarily related to students' decreased willingness to donate their body. Concerning performance, there was one significant correlation between Fear for the Body After Death and the laboratory examination score at examination 1. Students with higher fears may be able to structure their experience in a way that does not negatively impact their performance, but educators should still seek ways to support these students and encourage body donation.  相似文献   

3.
Assessment of the personalities of medical students could enable medical educators to formulate strategies for the best development of academic and clinical competencies. In this article, we focus on the experience of students in the anatomy dissecting room. While there have been many attempts to evaluate the emotional responses of medical students to human cadaveric dissection, there has been no investigation into how different personality traits affect the responses. The main hypothesis tested was that there is a relationship between personality traits and attitudes toward the dissection room. For the present study, a group of French medical students (n = 403; mean age 21.3 ± 1.6; 65.3% female) completed a "Big Five" personality inventory and a questionnaire to assess their attitudes in regard to human dissection. The findings are consistent with our hypothesis, in that we found a relationship between reporting anxiety and four of the "Big Five" dimensions (all except openness). The rated level of anxiety was positively correlated with negative affectivity, more strongly at the beginning than at the end of the course. There were significant gender differences in attitudes toward dissection. The findings are discussed in relation to the possibility of preparing students for the dissecting room experience and also in relation to the students' understanding of mortality issues.  相似文献   

4.
Dissection videos are commonly utilized in gross anatomy courses; however, the actual usage of such videos, as well as the academic impact of student use of these videos, is largely unknown. Understanding how dissection videos impact learning is important in making curricular decisions. In this study, 22 dissection videos were created to review structures identified in laboratory sessions throughout the Organ Systems 1 (OS1), 2 (OS2), and 3 (OS3) courses. Dissection videos were provided to 201 first-year medical students, and viewing data were recorded. Demographic data for age and gender identity were also collected from students. Overall, there was a significant decrease in total views (P = 0.001), the number of students who pressed play (P < 0.001), and the number of students who viewed ≥ 90% of the total length of videos (P < 0.001) from OS1 to OS3. The total adjusted time spent viewing videos was not significantly different between individual OS courses. There were some instances where significant differences existed in examination performance between those who did and did not view videos, and by time spent viewing videos. There were no significant differences in time spent viewing videos by gender. Together these data suggest that students may utilize dissection videos more at the beginning of a dissection course, although they remain an important resource throughout the year for a subset of students.  相似文献   

5.
6.
For centuries cadaveric dissection has been a cornerstone of medical anatomy education. However, time and financial limitations in modern, compressed medical curricula, coupled with the abundance of alternate modalities, have raised questions about the role of dissection. This study was designed to explore student perceptions of the efficacy of a dissection program for learning musculoskeletal anatomy, and possible adaptations for appropriate inclusion of dissection in the modern medical curricula. A paper-based questionnaire was used to collect data from 174 medical students after completion of cadaveric dissections. Data were analyzed using both quantitative and qualitative methods. Students strongly believed that cadaver-based learning is essential to anatomy education and modern teaching modalities only complement this. Moreover, most students reported that dissection provided an additional, immersive learning experience that facilitated active learning and helped in developing manual competencies. Students with previous dissection experience or an interest in anatomy-related specialties were significantly more likely to attend dissection sessions. Students found that the procedural dissection components enhanced the knowledge of applied anatomy and is beneficial for the development of clinical skills. They welcomed the idea of implementing more procedure-based dissections alongside lectures and prosections-based practical (PBP) sessions. Cadaveric dissection plays an integral role in medical anatomy education. Time restraints and an increased focus on clinical significance, however, demand carefully considered adaptations of existing dissection protocols. The introduction of procedure-based dissection offers an innovative, highly engaging and clinically relevant package that would amalgamate skills essential to medical practice while retaining the benefits that have allowed dissection to stand the test of time.  相似文献   

7.
Changes in medical education have affected both curriculum design and delivery. Many medical schools now use integrated curricula and a systemic approach, with reduced hours of anatomy teaching. While learning anatomy via dissection is invaluable in educational, professional, and personal development, it is time intensive and supports a regional approach to learning anatomy; the use of prosections has replaced dissection as the main teaching method in many medical schools. In our graduate‐entry medical degree, we use an integrated curriculum, with prosections to teach anatomy systemically. However, to not exclude dissection completely, and to expose students to its additional and unique benefits, we implemented a short “Dissection Experience” at the beginning of Year 2. Students attended three two‐hour anatomy sessions and participated in dissection of the clinically relevant areas of the cubital fossa, femoral triangle, and infraclavicular region. This activity was voluntary and we retrospectively surveyed all students to ascertain factors influencing their decision of whether to participate in this activity, and to obtain feedback from those students who did participate. The main reasons students did not participate were previous dissection experience and time constraints. The reasons most strongly affecting students' decisions to participate related to experience (lack of previous or new) and new skill. Students' responses as to the most beneficial component of the dissection experience were based around practical skills, anatomical education, the learning process, and the body donors. We report here on the benefits and practicalities of including a short dissection experience in a systemic, prosection‐based anatomy course. Anat Sci Educ 6: 225–231. © 2013 American Association of Anatomists.  相似文献   

8.
Many studies have reported on the perceptions of medical students toward dissection. It is important to understand the feelings and symptoms experienced during dissection so that they can be adequately handled. Prior to dissection, first year students are given lectures on aspects of dissection, death and dying, and death rituals in various cultures. Two separate questionnaires, one given during the first week of dissection and another given one month into the program were then completed anonymously by dissection groups. The questions were designed to be open‐ended, thereby encouraging group discussion amongst students. The questionnaires were used to determine the perception of students to dissection and to discover if these perceptions change during the dissection program. The first questionnaire revealed that students do experience fears and anxiety prior to and at the beginning of dissection; however, most of these fears dissipated by the time of the second questionnaire. One month into dissection students cited talking to peers as their main coping mechanism and fewer students mentioned emotional detachment from their cadaver as a coping mechanism, as was the case in the first questionnaire. Dissection was perceived as a positive experience by our student cohort and most students cited the main advantage of dissection as the ability to visualize organs in three dimensions. The comprehensive answers received from the students indicated that thorough discussion of feelings amongst peers occurred, introducing students to an important coping mechanism at an early stage of their learning. Anat Sci Educ. © 2013 American Association of Anatomists.  相似文献   

9.
Tuebingen's Sectio Chirurgica (TSC) is an innovative, interactive, multimedia, and transdisciplinary teaching method designed to complement dissection courses. The Tuebingen's Sectio Chirurgica (TSC) allows clinical anatomy to be taught via interactive live stream surgeries moderated by an anatomist. This method aims to provide an application‐oriented approach to teaching anatomy that offers students a deeper learning experience. A cohort study was devised to determine whether students who participated in the TSC were better able to solve clinical application questions than students who did not participate. A total of 365 students participated in the dissection course during the winter term of the 2012/2013 academic year. The final examination contained 40 standard multiple‐choice (S‐MC) and 20 clinically‐applied multiple‐choice (CA‐MC) items. The CA‐MC items referred to clinical cases but could be answered solely using anatomical knowledge. Students who regularly participated in the TSC answered the CA‐MC questions significantly better than the control group (75% and 65%, respectively; P < 0.05, Mann‐Whitney U test). The groups exhibited no differences on the S‐MC questions (85% and 82.5%, respectively; P > 0.05). The CA‐MC questions had a slightly higher level of difficulty than the S‐MC questions (0.725 and 0.801, respectively; P = 0.083). The discriminatory power of the items was comparable (S‐MC median Pearson correlations: 0.321; CA‐MC: 0.283). The TSC successfully teaches the clinical application of anatomical knowledge. Students who attended the TSC in addition to the dissection course were able to answer CA‐MC questions significantly better than students who did not attend the TSC. Thus, attending the TSC in addition to the dissection course supported students' clinical learning goals. Anat Sci Educ 10: 46–52. © 2016 American Association of Anatomists.  相似文献   

10.
Progressive curricular changes in medical education over the past two decades have resulted in the diaspora of gross anatomy content into integrated curricula while significantly reducing total contact hours. Despite the development of a wide range of alternative teaching modalities, gross dissection remains a critical component of medical education. The challenge posed to modern anatomists is how to maximize and integrate the time spent dissecting under the current curricular changes. In this study, an alternative approach to the dissection of the pelvis and perineum is presented in an effort to improve content delivery and student satisfaction. The approach involves removal of the perineum en bloc from the cadaver followed by excision of the pubic symphysis, removal and examination of the bladder and associated structures, examination and bisection of the midline pelvic organs in situ, and midsagittal hemisection of the pelvis for identification of the neurovasculature. Results indicate that this novel dissecting approach increases the number of structures identified by 46% ± 14% over current dissecting methods. Survey results indicate that students were better able to integrate lecture and laboratory concepts, understand the concepts, and successfully identify more structures using the new approach (P < 0.05). The concept of anatomic efficiency is introduced and proposed as a standard quantitative measure of gross dissection proficiency across programs and institutions. These findings provide evidence that innovative solutions to anatomy education can be found that help to maintain critical content and student satisfaction in a modern medical curriculum.  相似文献   

11.
This paper details the creation of a human gross anatomy laboratory from a defunct chemistry laboratory at West Liberty University, a small primarily undergraduate institution in West Virginia. The article highlights important considerations with regard to the development of a human gross anatomy laboratory including access to human gifts; assessment of the space for size, security, and privacy; assessment of the utilities; acquisition of a dissection table; ventilation; aesthetics in functional design; expenses; and sustainability. The report also identifies favorable conditions and potential pitfalls regarding the creation of a human gross anatomy laboratory. This paper demonstrates that a human gross anatomy laboratory can be created quickly and at little expense.  相似文献   

12.
13.
Growing evidence supports the use of reflective writing activities centered around the human cadaveric dissection experience to support and assess elements of medical student wellness. Dissection may promote personal and professional development, increase resilience, and foster a sense of connection and community. This study employed a qualitative analysis of a reflective writing exercise to explore the question: “What is the impact of the cadaveric dissection anatomy experience on the personal and professional development of medical students?” This cross-sectional study was conducted at the conclusion of the first-year anatomy module. A total of 117 United States allopathic medical students were given a questionnaire designed to elicit the students' experiences and introspection. The exercise included four reflective questions that were provided to 20 groups of six students. Grounded theory analysis was used to explore themes that arose in students' responses. Participants exhibited several common reactions to cadaveric dissection. After analyzing all responses, 266 unique open codes were identified for all four questions. These open codes were sorted into ten distinct axial codes, which are broader categorical themes of open codes. The aims of our study were to identify themes that emerged as students reflected on the impact of their dissection experience using reflective writing as a tool to capture these themes and to gather information to inform pedagogical methodologies. The researchers observed that the educational effects of dissection captured in the reflective writing resembled those found in other areas of medical education that emphasize professional identity formation and important humanistic qualities.  相似文献   

14.
Cadaver dissection is the first opportunity for many students to practice handling human tissue and is their first exposure to the occupational hazards involved with this task. Few studies examine dissection room injuries to ascertain the dangers associated with dissecting. We performed a retrospective cohort analysis of dissection room injuries from four student cohorts over an eleven‐year period (2001–2011), including second‐year medical students, third‐year medical students, second‐year dental students, and third‐year science students. Injury data included activity causing injury, object responsible, and injury site. A total of 163 injuries during 70,039 hours of dissection were recorded, with 66 in third‐year medical students, 42 in second‐year medical students, 36 in third‐year science students, and 16 in second‐year dental students. The overall rate was 2.87 injuries per 1,000 dissection hours, with second‐year medical students most frequently injured (5.5 injuries per 1,000 hours); third‐year medical students were least frequently injured (1.3 injuries per 1,000 hours). A significant difference in injury rates between student groups indicated a higher than expected injury rate to second‐year medical students and lower than expected rates to third‐year medical students. Injury rates increased for most groups between 2001–2006 and 2007–2011 periods. Most injuries (79%) were from scalpel cuts to the finger or thumb. This study provides injury rates for dissection room injuries to students, indicating differences in injury frequency between cohorts and an increase in injury rate over time. As scalpel cuts were the most likely injury mechanism, targeting scalpel handling with preventative strategies may reduce future injury risk. Anat Sci Educ 6: 404–409. © 2013 American Association of Anatomists.  相似文献   

15.
Although the methods for medical education continue to evolve due to the development of medicines, the cadaver dissection course still plays a fundamental role. The cadaver dissection course allows students to learn to handle instruments correctly while actively exploring three-dimensional anatomy. However, dissection comes with the risk of accidental injury. In recent years, the number of classes offered for the cadaver dissection course has decreased while the amount of knowledge required in clinical medicine has increased. Simulation-based education (SBE) has been proven to be an effective educational method that enhances the development of practical skills by integrating learners' knowledge and skills. This study aimed to investigate the effect of SBE as a preparatory education course when taken prior to a medical student's enrollment in the cadaver dissection course. In the present study, an SBE assuming practical cadaver dissection course was performed in the Clinical Simulation Center. The frequency of injury rates per 1000 h of cadaver dissection course was significantly less in 2017 and 2018 compared to that in 2016. Two years after the implementation of the SBE, average student self-efficacy scores and written examination scores significantly increased, whereas self-contentment scores were relatively unchanged. The results showed that the implementation of SBE decreased the incidence of injuries and improved students' overall self-efficacy scores and increased acquisition of knowledge evident on written examination score. Therefore, SBE as a preparatory education course may effectively promote the combined development of dissection skills and anatomical knowledge in the subsequent fundamental cadaver dissection course.  相似文献   

16.
Cadaveric prosections are effective learning tools in anatomy education. They range from a fully dissected, sometimes plastinated, complete cadaver (in situ prosections), to a single, carefully dissected structure detached from a cadaver (ex situ prosections). While most research has focused on the advantages and disadvantages of dissection versus prosection, limited information is available on the instructional efficacy of different prosection types. This contribution explored potential differences between in situ and ex situ prosections regarding the ability of undergraduate students to identify anatomical structures. To determine if students were able to recognize the same anatomical structure on both in situ and ex situ prosections, or on either one individually, six structures were tagged on both prosection types as part of three course summative examinations. The majority of students (61%–68%) fell into one of the two categories: those that recognized or failed to recognize the same structure on both in situ and ex situ prosections. The percentage of students who recognized a selected structure on only one type of prosection was small (1.6%–31.6%), but skewed in favor of ex situ prosections (P ≤ 0.01). These results suggest that overall students' identification ability was due to knowledge differences, not the spatial or contextual challenges posed by each type of prosection. They also suggest that the relative difficulty of either prosection type depends on the nature of the anatomical structure. Thus, one type of prosection might be more appropriate for teaching some structures, and therefore the use of both types is recommended.  相似文献   

17.
The dissecting competition in progress at the Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand. In this issue of ASE, Drs. Samalia and Stringer describe a dissecting competition for third year medical students. Working alone, students undertake a detailed dissection during a single weekend day and present an appropriately labeled prosection, together with a 300 word abstract emphasizing the clinical relevance of their work. Dissections are judged on presentation, accuracy of labeling, and relevance to the clinical abstract.  相似文献   

18.
After repeated requests from medical students for more cadaver dissection opportunities, a voluntary dissecting "competition" was initiated for the third year medical students in 2006. This has been held annually on five occasions since, offering up to 30 dissection stations and accommodating an average of 53 students (range 40-66) per year, representing about 20-25% of the total class. Material is standardized to distal upper or lower limb specimens, each of which is dissected by one or two students during a single weekend day. Participants are required to complete their dissection in about six hours and present an appropriately labeled display together with a 300 word abstract, emphasizing clinical relevance. Dissections are judged on presentation, accuracy of identification and labeling, and relevance to the clinical abstract, taking into account the technical difficulty of the particular dissection. Judging from successive annual uptake of places and informal feedback, this is not only a popular event allowing students to focus creatively on producing a clinically relevant dissection in a relaxed learning environment but also of educational value. An unexpected outcome has been the production of many specimens suitable as prosections for future classes. A dissecting competition may be a useful method of stimulating learning for medical students interested in undertaking further dissection but it requires appropriate staff commitment and a supply of suitable cadaver specimens.  相似文献   

19.
Mercer University School of Medicine utilizes a problem-based learning (PBL) curriculum for educating medical students in the basic clinical sciences. In 2014, an adjustment was piloted that enabled PBL cases to align with their corresponding cadaver dissection that reviewed the content of anatomy contained in the PBL cases. Faculty had the option of giving PBL cases in sequence with the cadaveric dissection schedule (sequential group) or maintaining PBL cases out of sequence with dissections (traditional group). During this adjustment, students’ academic performances were compared. Students’ perception of their own preparedness for cadaveric dissection, their perceived utility of the cadaver dissections, and free-response comments were solicited via an online survey. There were no statistically significant differences when comparing student mean examination score values between the sequential and traditional groups on both multidisciplinary examinations (79.39 ± 7.63 vs. 79.88 ± 7.31, P = 0.738) and gross anatomy questions alone (78.15 ± 10.31 vs. 79.98 ± 9.31, P = 0.314). A statistically significant difference was found between the sequential group's and traditional group's (63% vs. 29%; P = 0.005) self-perceived preparedness for cadaveric dissections in the 2017 class. Analysis of free-response comments found that students in the traditional group believed their performance in PBL group, participation in PBL group and examination performance was adversely affected when compared to students with the sequential schedule. This study provides evidence that cadaveric dissections scheduled in sequence with PBL cases can lead to increased student self-confidence with learning anatomy but may not lead to improved examination scores.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号