首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A concern on the level of anatomy knowledge reached after a problem‐based learning curriculum has been documented in the literature. Spatial anatomy, arguably the highest level in anatomy knowledge, has been related to spatial abilities. Our first objective was to test the hypothesis that residents are interested in a course of applied anatomy after a problem‐based learning curriculum. Our second objective was to test the hypothesis that the interest of residents is driven by innate higher spatial abilities. Fifty‐nine residents were invited to take an elective applied anatomy course in a prospective study. Spatial abilities were measured with a redrawn Vandenberg and Kuse Mental Rotations Test in two (MRT A) and three (MRT C) dimensions. A need for a greater knowledge in anatomy was expressed by 25 residents after a problem‐based learning curriculum. MRT A and C scores obtained by those choosing (n = 25) and not choosing (n = 34) applied anatomy was not different (P = 0.46 and P = 0.38, respectively). Percentage of residents in each residency program choosing applied anatomy was different [23 vs. 31 vs. 100 vs. 100% in Family Medicine, Internal Medicine, Surgery, and Anesthesia, respectively; P < 0.0001]. The interest of residents in applied anatomy was not driven by innate higher spatial abilities. Our applied anatomy course was chosen by many residents because of training needs rather than innate spatial abilities. Future research will need to assess the relationship of individual differences in spatial abilities to learning spatial anatomy. Anat Sci Ed 2:107–112, 2009. © 2009 American Association of Anatomists.  相似文献   

2.
Spatial abilities have been correlated to anatomy knowledge assessment and spatial training has been found to improve spatial abilities in previous systematic reviews. The objective of this systematic review was to evaluate spatial abilities training in anatomy education. A literature search was done from inception to 3 August 2017 in Scopus® and several databases on the EBSCOhost platform. Citations were reviewed and those involving anatomy education, an intervention, and a spatial abilities test were retained and the corresponding full-text articles were reviewed for inclusion. Before and after training studies, as well as comparative training programs, relating a spatial training intervention to spatial abilities were eligible. Of the 2,405 citations obtained, 52 articles were identified and reviewed, yielding eight eligible articles. Instruction in anatomy and mental rotations training were found to improve spatial abilities. For the seven studies retained for the meta-analysis that included the effect of interventions on spatial abilities test scores, the pooled treatment effect difference was 0.49 (95% CI [0.17; 0.82]; n = 11) improvement. For the two studies that included the practice effect on spatial abilities test scores in a control group, the pooled treatment effect difference was 0.47 (95% CI [−0.03; 0.97]; n = 2) improvement. In these two studies, the impact of the intervention on spatial abilities test scores was found despite the practice effect. Evidence was found for improvement of spatial abilities in anatomy education using instruction in anatomy and mental rotations training.  相似文献   

3.
Currently, medical education context poses different challenges to anatomy, contributing to the introduction of new pedagogical approaches, such as computer-assisted learning (CAL). This approach provides insight into students' learning profiles and skills that enhance anatomy knowledge acquisition. To understand the influence of anatomy CAL on spatial abilities, a study was conducted. A total of 671 medical students attending Musculoskeletal (MA) and Cardiovascular Anatomy (CA) courses, were allocated to one of three groups (MA Group, CA Group, MA + CA Group). Students' pre-training and post-training spatial abilities were assessed through Mental Rotations Test (MRT), with scores ranging between 0-24. After CAL training sessions, students' spatial abilities performance improved (9.72 ± 4.79 vs. 17.05 ± 4.57, P < 0.001). Although male students in both MA Group and CA Group show better baseline spatial abilities, no sex differences were found after CAL training. The improvement in spatial abilities score between sessions (Delta MRT) was correlated with Musculoskeletal Anatomy training sessions in MA Group (r = 0.333, P < 0.001) and MA + CA Group (r = 0.342, P < 0.001), and with Cardiovascular Anatomy training sessions in CA Group (r = 0.461, P = 0.001) and MA + CA Group (r = 0.324, P = 0.001). Multiple linear regression models were used, considering the Delta MRT as dependent variable. An association of Delta MRT to the amount of CAL training and the baseline spatial abilities was observed. The results suggest that CAL training in anatomy has positive dose-dependent effect on spatial abilities.  相似文献   

4.

Spatial ability based on measures of mental rotation, and spatial experience based on self‐reported participation in visual‐arts as well as spatial‐orientation activities were assessed in a sample of 337 Chinese, gifted students. Consistent with past findings for the general population, there were gender differences in spatial ability favoring boys. However, other results provided little support for the idea that gender differences in spatial experience might foster gender differences in spatial ability; specifically, results showed modest gender differences in visual‐arts experience favoring girls, and variation in visual orientation experience favoring secondary‐school boys. Nonetheless, the role of spatial experience had a more marked effect on girls, suggesting that encouraging female students to gain spatial experience might help bridge the gap in spatial ability between the genders.  相似文献   

5.
Spatial ability is an important factor in learning anatomy. Students with high scores on a mental rotation test (MRT) systematically score higher on anatomy examinations. This study aims to investigate if learning anatomy also oppositely improves the MRT‐score. Five hundred first year students of medicine (n = 242, intervention) and educational sciences (n = 258, control) participated in a pretest and posttest MRT, 1 month apart. During this month, the intervention group studied anatomy and the control group studied research methods for the social sciences. In the pretest, the intervention group scored 14.40 (SD: ± 3.37) and the control group 13.17 (SD: ± 3.36) on a scale of 20, which is a significant difference (t‐test, t = 4.07, df = 498, P < 0.001). Both groups show an improvement on the posttest compared to the pretest (paired samples t‐test, t = 12.21/14.71, df = 257/241, P < 0.001). The improvement in the intervention group is significantly higher (ANCOVA, F = 16.59, df = 1;497, P < 0.001). It is concluded that (1) medical students studying anatomy show greater improvement between two consecutive MRTs than educational science students; (2) medical students have a higher spatial ability than educational sciences students; and (3) if a MRT is repeated there seems to be a test effect. It is concluded that spatial ability may be trained by studying anatomy. The overarching message for anatomy teachers is that a good spatial ability is beneficial for learning anatomy and learning anatomy may be beneficial for students' spatial ability. This reciprocal advantage implies that challenging students on spatial aspects of anatomical knowledge could have a twofold effect on their learning. Anat Sci Educ 6: 257–262. © 2013 American Association of Anatomists.  相似文献   

6.
Anatomy knowledge has been found to include both spatial and non‐spatial components. However, no systematic evaluation of studies relating spatial abilities and anatomy knowledge has been undertaken. The objective of this study was to conduct a systematic review of the relationship between spatial abilities test and anatomy knowledge assessment. A literature search was done up to March 20, 2014 in Scopus and in several databases on the OvidSP and EBSCOhost platforms. Of the 556 citations obtained, 38 articles were identified and fully reviewed yielding 21 eligible articles and their quality were formally assessed. Non‐significant relationships were found between spatial abilities test and anatomy knowledge assessment using essays and non‐spatial multiple‐choice questions. Significant relationships were observed between spatial abilities test and anatomy knowledge assessment using practical examination, three‐dimensional synthesis from two‐dimensional views, drawing of views, and cross‐sections. Relationships between spatial abilities test and anatomy knowledge assessment using spatial multiple‐choice questions were unclear. The results of this systematic review provide evidence for spatial and non‐spatial methods of anatomy knowledge assessment. Anat Sci Educ 10: 235–241. © 2016 American Association of Anatomists.  相似文献   

7.
In two studies with a total of 324 participants, dentistry students were assessed on psychometric measures of spatial ability, reasoning ability, and on new measures of the ability to infer the appearance of a cross-section of a three-dimensional (3-D) object. We examined how these abilities and skills predict success in dental education programs, and whether dental education enhances an individual's spatial competence. The cross-section tests were correlated with spatial ability measures, even after controlling for reasoning ability, suggesting that they rely specifically on the ability to store and transform spatial representations. Sex differences in these measures indicated a male advantage, as is often found on measures of spatial ability. Spatial ability was somewhat predictive of performance in restorative dentistry practical laboratory classes, but not of learning anatomy in general. Comparisons of the performance of students early and late in their dental education indicated that dentistry students develop spatial mental models of the 3-D structure of teeth, which improves their ability to mentally maintain and manipulate representations of these specific structures, but there is no evidence that dental education improves spatial transformation abilities more generally.  相似文献   

8.
Spatial ability (SA) is the cognitive capacity to understand and mentally manipulate concepts of objects, remembering relationships among their parts and those of their surroundings. Spatial ability provides a learning advantage in science and may be useful in anatomy and technical skills in health care. This study aimed to assess the relationship between SA and anatomy scores in first- and second-year medical students. The training sessions focused on the analysis of the spatial component of objects' structure and their interaction as applied to medicine; SA was tested using the Visualization of Rotation (ROT) test. The intervention group (n = 29) received training and their pre- and post-training scores for the SA tests were compared to a control group (n = 75). Both groups improved their mean scores in the follow-up SA test (P < 0.010). There was no significant difference in SA scores between the groups for either SA test (P = 0.31, P = 0.90). The SA scores for female students were significantly lower than for male students, both at baseline and follow-up (P < 0.010). Anatomy training and assessment were administered by the anatomy department of the medical school, and examination scores were not significantly different between the two groups post-intervention (P = 0.33). However, participants with scores in the bottom quartile for SA performed worse in the anatomy questions (P < 0.001). Spatial awareness training did not improve SA or anatomy scores; however, SA may identify students who may benefit from additional academic support.  相似文献   

9.
A three‐dimensional appreciation of the human body is the cornerstone of clinical anatomy. Spatial ability has previously been found to be associated with students' ability to learn anatomy and their examination performance. The teaching of anatomy has been the subject of major change over the last two decades with the reduction in time spent on dissection and greater use of web‐based and computer‐based resources. In this study, we examine whether the relationship between spatial ability and performance in anatomy examinations is sustained in a contemporary curriculum. A comparison of students' performance in a series of tests of spatial ability to their anatomy examination scores in biomedical sciences course exhibited only weak association (r = 0.145 and P = 0.106). This has implications for the use of spatial ability as a predictor of success in introductory subjects in the teaching of anatomy. Anat Sci Educ 7: 289–294. © 2013 American Association of Anatomists.  相似文献   

10.
Worldwide there is a growing reliance on sessional teachers in universities. This has impacted all disciplines in higher education including medical anatomy programs. The objective of this review was to define the role and support needs of sessional anatomy teachers by reporting on the (1) qualifications, (2) teaching role, (3) training, and (4) performance management of this group of educators. A systematic literature search was conducted on the 27 July 2017 in Scopus, Web of Science, and several databases on the Ovid, ProQuest and EBSCOhost platforms. The search retrieved 5,658 articles, with 39 deemed eligible for inclusion. The qualifications and educational distance between sessional anatomy teachers and their students varied widely. Reports of cross‐level, near‐peer and reciprocal‐peer teaching were identified, with most institutes utilizing recent medical graduates or medical students as sessional teachers. Sessional anatomy teachers were engaged in the full spectrum of teaching‐related duties from assisting students with cadaveric dissection, to marking student assessments and developing course materials. Fourteen institutes reported that training was provided to sessional anatomy teachers, but the specific content, objectives, methods and effectiveness of the training programs were rarely defined. Evaluations of sessional anatomy teacher performance primarily relied on subjective feedback measures such as student surveys (n = 18) or teacher self‐assessment (n = 3). The results of this systematic review highlight the need for rigorous explorations of the use of sessional anatomy teachers in medical education, and the development of evidence‐based policies and training programs that regulate and support the use of sessional teachers in higher education. Anat Sci Educ 11: 410–426. © 2017 American Association of Anatomists.  相似文献   

11.
12.
Visual-spatial abilities are considered a successful predictor in anatomy learning. Previous research suggest that visual-spatial abilities can be trained, and the magnitude of improvement can be affected by initial levels of spatial skills. This case-control study aimed to evaluate (1) the impact of an extra-curricular anatomy dissection course on visual-spatial abilities of medical undergraduates and (2) the magnitude of improvement in students with initially lower levels of visual-spatial abilities, and (3) whether the choice for the course was related to visual-spatial abilities. Course participants (n = 45) and controls (n = 65) were first and second-year medical undergraduates who performed a Mental Rotations Test (MRT) before and 10 weeks after the course. At baseline, there was no significant difference in MRT scores between course participants and controls. At the end of the course, participants achieved a greater improvement than controls (first-year: ∆6.0 ± 4.1 vs. ∆4.9 ± 3.2; ANCOVA, P = 0.019, Cohen's d = 0.41; second-year: ∆6.5 ± 3.3 vs. ∆6.1 ± 4.0; P = 0.03, Cohen's d = 0.11). Individuals with initially lower scores on the MRT pretest showed the largest improvement (∆8.4 ± 2.3 vs. ∆6.8 ± 2.8; P = 0.011, Cohen's d = 0.61). In summary, (1) an anatomy dissection course improved visual-spatial abilities of medical undergraduates; (2) a substantial improvement was observed in individuals with initially lower scores on the visual-spatial abilities test indicating a different trajectory of improvement; (3) students' preferences for attending extracurricular anatomy dissection course was not driven by visual-spatial abilities.  相似文献   

13.
Spatial ability has been found to be a good predictor of success in learning anatomy. However, little research has explored whether spatial ability can be improved through anatomy education and experience. This study had two aims: (1) to determine if spatial ability is a learned or inherent facet in learning anatomy and (2) to ascertain if there is any difference in spatial ability between experts and novices in anatomy. Fifty participants were identified: 10 controls, 10 novices, 10 intermediates, and 20 experts. Participants completed four computerized spatial ability tasks, a visual mental rotation task, categorical spatial judgment task, metric spatial task, and an image-scanning task. The findings revealed that experts (P = 0.007) and intermediates (P = 0.016) were better in the metric spatial task than novices in terms of making more correct spatial judgments. Experts (P = 0.033), intermediates (P = 0.003), and novices (P = 0.004) were better in the categorical spatial task than controls in terms of speed of responses. These results suggest that certain spatial cognitive abilities are especially important and characteristic of work needed in clinical anatomy, and that education and experience contribute to further development of these abilities.  相似文献   

14.
For nearly three decades, researchers have been concerned that the educational measurement field is not producing enough graduate‐level specialists to meet the growing demand driven by the increased use of educational assessments in the United States. This study examined the supply‐side aspect of the proposed labor shortage by relying on data from the National Science Foundation's Survey of Earned Doctorates collected between 1997 and 2016. Over the 20 years examined, measurement programs produced 3,124 doctoral graduates, and across this time span, the annual production of graduates nearly doubled. This supply expansion can largely be attributed to the increase in the number of international graduates, which outpaced the annual growth rate of domestic PhD recipients by 156%. Moreover, 85% of graduates were found to either self‐identify as White or Asian. Less than 10 Hispanic and no more than 20 Black graduates were produced in any of the years examined. Of the 76% of graduates that reported having a job offer or accepted a position upon graduation, most entered the academy despite the overall average starting salary ($59,484) being considerably lower than the starting salary for their counterparts entering industry ($84,918), government ($69,970), or other educational institutions ($81,428).  相似文献   

15.
Teaching is an increasingly recognized responsibility of the resident physician. Residents, however, often assume teaching responsibilities without adequate preparation. Consequently, many medical schools have implemented student‐as‐teacher (SAT) programs that provide near‐peer teaching opportunities to senior medical students. Near‐peer teaching is widely regarded as an effective teaching modality; however, whether near‐peer teaching experiences in medical school prepare students for the teaching demands of residency is less understood. We explored whether the anatomy‐based SAT program through the Human Structure didactic block at Mayo Medical School addressed the core teaching competencies of a medical educator and prepared its participants for further teaching roles in their medical careers. A web‐based survey was sent to all teaching assistants in the anatomy‐based SAT program over the past five years (2007–2011). Survey questions were constructed based on previously published competencies in seven teaching domains – course development, course organization, teaching execution, student coaching, student assessment, teacher evaluation, and scholarship. Results of the survey indicate that participants in the anatomy‐based SAT program achieved core competencies of a medical educator and felt prepared for the teaching demands of residency. Anat Sci Educ 6: 385–392. © 2013 American Association of Anatomists.  相似文献   

16.
Spatial understanding of complex anatomical concepts is often a challenge for learners, as well as for educators. It is even more challenging for students with low mental spatial abilities. There are many options to teach spatial relationships, ranging from simple models to high-end three-dimensional (3D) virtual reality tools. Using a randomized controlled trial design, this study explored the use of a unique combination of deictic and iconic hand gestures to enhance spatial anatomical understanding, coining the term “Air Anatomy”. The control group (n = 45) was given a lecture on the anatomy of extraocular muscles, while the intervention group (n = 49) received the same lecture including “Air Anatomy” hand gestures. When compared to the control group, the post-test scores for the intervention group were significantly higher for basic recall (P < 0.001; Mann–Whitney U test) and for the application of knowledge (P = 0.015; Mann–Whitney U test). Students with low to moderate spatial ability (as assessed by a mental rotation test) were found to benefit most by this technique. Students in the intervention group also reported a lower extrinsic cognitive load and higher germane load, when compared to the control group. An instructional skills questionnaire survey indicated the effectiveness of this technique in improving overall classroom experience. Feedback of the students in the intervention group was also favorable for instruction using “Air Anatomy”. The study suggests that “Air Anatomy” is a useful, “no-cost”, accessible method that aids spatial understanding of anatomical concepts.  相似文献   

17.
The aim of this research was to determine whether the new geographic information technologies, included as teaching objectives in the new European Space for Higher Education Engineering degrees, develop spatial abilities. Bearing this in mind, a first year seminar using the INSPIRE Geoportal (Infrastructure for Spatial Information in Europe) was designed, involving 46 engineering students from the University of La Laguna. The spatial orientation ability development was analysed through statistical inference methods, using the Perspective Taking/Spatial Orientation Test.  相似文献   

18.
19.
This article reports on two studies that describe the status of male elementary preservice and inservice teachers. One study looked at entering teacher candidates, describing differences between males entering elementary education and other teacher candidates, at three universities in the U.S.A. (n = 936), with three sets of variables: (1) high school background, (2) self-confidence in teaching, and (3) expectations for teacher education. The second study looked at practicing male elementary school teachers who were recent graduates of teacher education programs at 12 different universities (n = 1098), with three sets of variables: (1) career status, (2) ratings of teacher education program quality, and (3) self-evaluation of teaching knowledge and skills. Male elementary candidates were less academically oriented, more self-confident about teaching, and less optimistic about usefulness of courses than other subgroups of entering teacher candidates. Male elementary teachers had lower job satisfaction and less favorable opinions of their teacher education programs than other subgroups of teachers, but were just as sanguine about their level of teaching skill as were the other groups.  相似文献   

20.
Although studies have shown that patients want to receive sexual health services from their physicians, doctors often lack the knowledge and skills to discuss sexual health with their patients. There is little consistency among medical schools and residency programs in the United States regarding comprehensiveness of education on sexual health. Sexuality education in U.S. medical schools and residency programs is reviewed, highlighting schools that go beyond the national requirements for sexuality education. Increasing the amount of sexuality instruction provided for medical education and training, standardizing sexuality education requirements in medical school and residency programs, incorporating different learning models, establishing means of consistently assessing and evaluating sexuality knowledge and skills, and creating national certification standards for the practice of sexual medicine are recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号