首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
二次曲线的弦的中点轨迹导数求法   总被引:1,自引:0,他引:1  
二次曲线的弦的中点轨迹的求解方法可以用代入法、几何法、直线参数方程法等,但这些方法有时比较麻烦。可以利用微分中值定理、导数公式和隐函数求导数法则,求解二次曲线的弦的中点轨迹。  相似文献   

2.
由于现在的高考数学试题越来越注重能力的考察.要学生在两个小时内完成150分的试题,如果我们在教学和总复习中不加强对学生能力的培养,对一些重要的题型还是按常规解法教给学生.那么,学生在高考场上就做不了几个题,我们的学生已有了会做的题没有时间做的教训,所以,教师有必要对一些典型题型的解法进行研究,找出解这些题的简便解法,传授给学生,使学生争取在有限的时间内完成更多的试题.  相似文献   

3.
一组平行直线族被二次曲线截得的线段,叫二次曲线的一组平行弦;一组过定点P_0(x_0,y_0)的直线族被二次曲线截得的线段,叫二次曲线的一组共点P_0(x_0,y_0)的弦。如图。  相似文献   

4.
这类问题已有一般解法,本文拟分三种情况讨论。一、求平行弦的中点轨迹例1.已知椭圆x~2/a~2+y~2/b~2=1(a>b>0),求斜率是k的平行弦的中点轨迹。解设弦的两端点为P_j(x_j,y_j)(j=1,2),中点为P(x,y)。则有  相似文献   

5.
求二次曲线以已知点为中点的弦的方程和弦的中点轨迹问题,已有不少文章论及,提出了许多不同的解法。本文从直线与二次曲线族的位置关系出发,也对这类问题进行一些探讨。一、二次曲线以已知点为中点的弦的方程我们知道,若直线l与圆心为O,半径为r的圆相切于P点,则任一以O为圆心,半径大于r的圆截l所得的弦都以P为中点。故给出点P(x_0,y_0)(异于原点)和圆x~2 y~2=R~2,当R~2>x_0~2 y_0~2时,要求以P为中点的弦所在直线的方程,只须在以原点为圆心的圆族x~2 y~2=r~2内,求出圆x~2 y~2=x_0~2 y_0~2在P点的切线方程即可,其方程为x_0x y_0y=x_0~2 y_0~2,即  相似文献   

6.
已知二次曲线方程为:F(x,y)=Ax~2 Bxy Cy~2 Dx Ey F=0,若以点P(x_0,y_0)为中点的二次曲线的弦存在,求这弦所在的直线方程,是解析几何里常见的一类问题。本文旨在给出这弦所在直线方程的四种求法。 方法一,设所求直线方程为y-y_0=k(x-x_0)将y=k(x-x_0) y_0代入二次曲线方程,整理得:(A BK CK~2)x~2-[2Cx_0k~2 (Bx_0-2Cy_0-E)k-(By_0 D)]x [Cx_0~2k~2-(2Cx_0y_0 Ex_0)k (Cy_0~2 Ey_0 F)]=0  相似文献   

7.
本文给出二次曲线为一般式时,点弦方程的简易求法  相似文献   

8.
如何求二次曲线中点弦的方程,许多杂志作了有益的探讨,但大都限于二次曲线方程为标准型的情形.对于二次曲线方程为一般式的情形很少谈及.为此,笔者介绍一种十分简捷的求法,该法具有实用性强。便于操作且容易记忆特点.  相似文献   

9.
全日制普通高级中学教科书(必修)《数学》第二册(上) P_(88)B 组4,即题目两条曲线 f_1(x,y)=0和 f_2(x,y)=0,它们的交点是 P(x_0,y_0),求证:方程f_1(x,y) λf_2(x,y)=0①的曲线也经过点 P(λ是任意实数).题目结论的证明很容易,此略.题目中,把条件放宽为二曲线 f_1(x,y)=0和 f_2(x,y)=0可以无交点,即方程组(?)②无实数解.  相似文献   

10.
本文介绍一种想法直观、演算简便、易于掌握的解法——坐标转换法,以供参考。基本思想:直接设弦的中点坐标为P(x,y),将中点坐标(x,y)转移到已知圆锥曲线上去考虑。  相似文献   

11.
本刊86年第3期《二次曲线中点弦方程和弦中点的轨迹方程》一文例3“过点P(0,1)作直线与抛物线y~2=x相交,求被抛物线截得的弦的中点的轨迹的方程”的答案中说轨迹是抛物线(y-1/2)~2=1/2(x 1/2)位于已知抛物线y~2=x内且在x轴下方的那一段  相似文献   

12.
二次曲线上任意两点连线叫做弦,以P(x_0,y_0)为中点的弦称为二次曲线关于P的中点弦.我们知道,若P不为有心二次曲线的中心,则P的中点弦是唯一的. 定理设P(x_0,y_0)为二次曲线Ax~2 Bxy Cy~2 Dx Ey F=0内部一点(异于中心),则P的中点弦所在的直线方程为  相似文献   

13.
定理设二次曲线方程为F(x,y)=Ax~2+2Bxy+Cy~2+2Dx+2Ey +F=0。(1)过平面上任意一定点M(x_0,y_0)(除去曲线的中心)作动直线,与曲线(1)交于P_1、P_2两点,则弦P_1P_2的中点轨迹方程是Φ(x-x_0,y-y_0)÷F_1(x_0,y_0)(x-x_0) ÷F_2(x_0,y_0)(y-y_0)=0(2)并且曲线(1)与曲线(2)同族。其中Φ(x,y)=Ax~2+2Bxy+Cy~2 F_1(x,y)=Ax+By+D F_2(x,y)=Bx+Cy+E 证明:设过定点M(x_0,y_0)的动直线为  相似文献   

14.
二次曲线的平行弦中点轨迹方程它的一般求法趋于公式化,无逻辑推理,求法单调,有的求解过程还较为复杂,而高中解析几何中的几类特殊二次曲线,求它的弦中点轨迹方程时,一般又是要引用韦达定理及中点坐标公式等,使得求解过程较为复杂,现介绍此类问题的另一求法供参考.  相似文献   

15.
介绍利用二元Taylor定理求二次曲线弦中点轨迹与弦长的一种方法.  相似文献   

16.
本文给出圆锥曲线各种变动弦中点轨迹方程的统一求法,这种求法程序简单,便于记忆和应用。在此基础上就几类常见的弦中点轨迹问题分别举例加以说明。 一、一般圆锥曲线变动弦中点轨迹的统一方程及求法 引理:设圆锥曲线C的方程为:F(x,y)=Ax~2 Bxy Cy 2 Dx Ey F=0(1)记Fx(x,y)=2Ax By D,F'y(x,y)=Bx 2Cy E假如C以己知点M(Xo,yo)为中点的弦存在,则该弦所在直线的方程为:  相似文献   

17.
在中学解析几何中求动点的轨迹,特别是求二次曲线的平行弦与绕定点的转动弦的中点轨迹一般都比较繁难,但如果恰当地使用二次曲线的直径方程,就会较简捷地推出结果.本文仅就二次曲线的直径方程在求二次曲线弦的中点轨迹的应用作一些初步的整理和探讨.  相似文献   

18.
求动弦中点轨迹问题是解析几何中经典的题型,本文借助题目详细讲述代入法、点差法、坐标转换法的使用.  相似文献   

19.
如何求二次曲线的弦的中点轨迹方程,这是中学解析几何中常见的问题之一。目前解决这类问题的主要步骤是:根据所给条件建立弦的参数方程,将它与二次曲线的方程联立后,再求解,得出交点坐标(或将弦的参数方程代入二次曲线的方程后,利用根与系数的关系,求出二根之和),再利用中点坐标公式,便得到二次曲线的弦的中点轨迹参数方程,最后消  相似文献   

20.
一阶导数与二次曲线弦中点间存在着一种内在联系,这种联系为解决二次曲线中点弦一类问题开辟了一条较为简捷的路径.本文就以定理形式揭示这种联系并列举应用. 定理:椭圆x~2/a~2 y~2/b~2=1的以斜率为k的一组平行弦中点轨迹方程是x~2/a~2 yy_x~'/b~2=0(※)(|x|≤a,|y|≤b)其中y_x~'就是平行弦的斜率k,它等于直线(※)与椭圆交点处切线的斜率. 证明:设点P(x_0,y_0)是以k为斜率的弦P_1P_2的中点,点P_1(x_1,y_1),P_2(x_2,y_2)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号