首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many scientists and coaches are interested in mechanical power produced during cycling, and use Schoberer Rad Me\technik (SRM) bicycle power cranks to obtain this data. However, it has been expensive and difficult to calibrate SRM cranks, causing much of the collected data to be unreliable. We present a static method, derived from first principles, for obtaining a calibration factor for SRM cranks. A known mass and lever arm (chainring of a known diameter) are used to apply a known torque load to the instrument in four positions, and the output frequencies are used to calculate the calibration factor in Hz/Nm. The reproducibility of this method is ±0.01 Hz/Nm, which is acceptable for the application of the instrument, which is measurement of mechanical power application by cyclists at the crank. The method is reliable, inexpensive, and easy to set up, and will allow higher confidence in data collected using SRM power cranks. We recommend calibration of the power meter once every six months because of the measured drift of the calibration factor over time.  相似文献   

2.
The stiffness measuring method for bicycle frames is not standardized, leading to a wide variety of test setups; they differ in many aspects such as applied load, support constraints and frame deflection measurement. The aim of this paper is to draw attention to this problem and to quantify the perturbing, unwanted side effects that influence the stiffness measurement of the bicycle frame. This is illustrated by developing a multi-purpose rating test method for bicycle frame stiffness. The proposed test rig design considers different aspects which should be taken into account when measuring the bicycle frame stiffness. In the experimental setup, it is observed that the contribution of the test bench compliance led to 21% difference in the frame stiffness results; the influence due to the head, the tube-bearing type the corresponding preload resulted in up to 19% difference in the stiffness results between the lowest and highest stiffness values measured; hysteresis effects caused by pulleys are estimated to introduce errors up to 11%; and the influence due to the operator variability and sensor accuracy is estimated to be less than 3%.  相似文献   

3.
Real-world cycling performance depends not only on exercise capacities, but also on efficiently traversing the bicycle through the terrain. The aim of this study was to determine if it was possible to quantify the braking done by a cyclist in the field. One cyclist performed 408 braking trials (348 on a flat road; 60 on a flat dirt path) over 5 days on a bicycle fitted with brake torque and angular velocity sensors to measure brake power. Based on Newtonian physics, the sum of brake work, aerodynamic drag and rolling resistance was compared with the change in kinetic energy in each braking event. Strong linear relationships between the total energy removed from the bicycle-rider system through braking and the change in kinetic energy were observed on the tar-sealed road (r2 = 0.989; p < 0.0001) and the dirt path (r2 = 0.952; p < 0.0001). T-tests revealed no difference between the total energy removed and the change in kinetic energy on the road (p = 0.715) or dirt (p = 0.128). This study highlights that brake torque and angular velocity sensors are valid for calculating brake power on the disc brakes of a bicycle in field conditions. Such a device may be useful for investigating cyclists’ ability to traverse through various terrains.  相似文献   

4.
通过实验测试方法,对优秀中长距离自行车运动员进行功率车测试及肌电研究,了解运动员在原地起动阶段的踏频及功率变化情况,以及在原地起动阶段和固定功率车进行踏蹬时.下肢各主要肌肉的激活时间与用力情况,以便掌握运动员骑行过程中主要的用力肌肉,加强训练的针对性和有效性。研究发现,股内侧肌和股外侧肌肌电信号表现明显,提示这两块肌肉可能为踏蹬主要发力肌肉。在踏蹬过程中,运动员的肌肉用力情况存在一定的差异,全能运动员与公路运动员相比,肌肉用力比较平均,肌力也相对要大  相似文献   

5.
Abstract

Bicycle helmets exhibit complex structures so as to combine impact protection with ventilation. A quantitative experimental measure of the state of the art and variations therein is a first step towards establishing principles of bicycle helmet ventilation. A thermal headform mounted in a climate-regulated wind tunnel was used to study the ventilation efficiency of 24 bicycle helmets at two wind speeds. Flow visualization in a water tunnel with a second headform demonstrated the flow patterns involved. The influence of design details such as channel length and vent placement was studied, as well as the impact of hair. Differences in heat transfer among the helmets of up to 30% (scalp) and 10% (face) were observed, with the nude headform showing the highest values. On occasion, a negative role of some vents for forced convection was demonstrated. A weak correlation was found between the projected vent cross-section and heat transfer variations when changing the head tilt angle. A simple analytical model is introduced that facilitates the understanding of forced convection phenomena. A weak correlation between exposed scalp area and heat transfer was deduced. Adding a wig reduces the heat transfer by approximately a factor of 8 in the scalp region and up to one-third for the rest of the head for a selection of the best ventilated helmets. The results suggest that there is significant optimization potential within the basic helmet structure represented in modern bicycle helmets.  相似文献   

6.
Muscular power is important for maintaining physical functioning with aging. Proper quantification of the reliability of muscular power tests is crucial to inform monitoring of individuals and sample size planning for interventional studies. This study evaluated short- and long-term reliability of leg extensor power measurement in 72 adults (age 62.7 ± 8.6 years). Participants completed four repeat trials on the Nottingham leg extensor power rig, with a further trial twelve weeks later. Mean change, typical error, and intraclass correlation coefficients (ICC) were calculated. For short-term reliability, mean change in power output was trivial after two trials (1.2–4.8%). Typical errors were small following four trials in the dominant leg of males (10.9–5.8%), three in the non-dominant leg of males (9.9–6.2%) and the dominant leg of females (10.0–9.6%) and two in the non-dominant leg in females (8.3%). Intraclass correlation coefficients (ICCs) were very high (0.88–0.96). For long-term reliability, mean change remained trivial (1.0–2.5%), typical errors remained small (5.8–8.6%), and ICCs very high (0.94–0.96). The leg extensor power rig is a reliable method for assessing lower body muscular power, both short- and long-term, with only minimal habituation effects.  相似文献   

7.
A system was developed for measuring and analyzing the forces placed on a bicycle pedal during operation of a stationary ergometer. Forces are measured in the plane parallel to the ergometer in directions normal and tangential to the surface of the pedals, encompassing the plane of propulsive forces. The pedals are designed to be structurally and functionally equivalent to standard clipless pedals. The stock pedal spindle and bearing assembly was replaced with a new spindle that was instrumented with two Wheatstone bridges of foil strain gauges. The bearings were relocated to the crank-arm/pedal-spindle interface. The original pedal body was then pinned to the new spindle. Additionally, the pedals were instrumented with optical encoders to measure the pedal angle relative to the crank arm. An optical encoder was also mounted near the bottom bracket to measure crank-arm angle. Signals were transmitted via a cable tethered to the cyclist’s leg from the pedals to an instrumented chassis, where the strain gauge signals were conditioned and the digital optical encoder signals converted to analogue signals. From the instrumented chassis, seven signals are ready for standard analogue data collection. Data collected from this new system has proved to be both comparable with previously published literature and accurate when compared with expected power output values.  相似文献   

8.
Heat transfer variations of bicycle helmets   总被引:1,自引:0,他引:1  
Bicycle helmets exhibit complex structures so as to combine impact protection with ventilation. A quantitative experimental measure of the state of the art and variations therein is a first step towards establishing principles of bicycle helmet ventilation. A thermal headform mounted in a climate-regulated wind tunnel was used to study the ventilation efficiency of 24 bicycle helmets at two wind speeds. Flow visualization in a water tunnel with a second headform demonstrated the flow patterns involved. The influence of design details such as channel length and vent placement was studied, as well as the impact of hair. Differences in heat transfer among the helmets of up to 30% (scalp) and 10% (face) were observed, with the nude headform showing the highest values. On occasion, a negative role of some vents for forced convection was demonstrated. A weak correlation was found between the projected vent cross-section and heat transfer variations when changing the head tilt angle. A simple analytical model is introduced that facilitates the understanding of forced convection phenomena. A weak correlation between exposed scalp area and heat transfer was deduced. Adding a wig reduces the heat transfer by approximately a factor of 8 in the scalp region and up to one-third for the rest of the head for a selection of the best ventilated helmets. The results suggest that there is significant optimization potential within the basic helmet structure represented in modern bicycle helmets.  相似文献   

9.
通过对14个省市100名优秀自行车运动员肝血流图的研究,(均为健将和一级运动员,平均年龄20岁,训练年限4~8年),结果表明肝血流图对运动员的机能诊断是一项良好的指标.为自行车运动员选材,改进训练方法,提供了某些生理依据。  相似文献   

10.
主要采用文献资料法、问卷调查法、专家访谈法、数理统计法等,调查了当前上海市自行车旅游开展现状,并借鉴国外先进经验,结合自身优势,从城市发展的大格局角度分析自行车旅游今后的规划、布局,强调体育和旅游及相关产业的包容性发展,突出规划的科学性、合理性,注重自行车旅游业发展的可持续性,并提出发展对策。  相似文献   

11.
采用Wingate无氧功率试验,对陕西师范大学体育学院10名体育教育专业不同专项的学生进行Monark894E和POWERMAX-Ⅶ自行车功率计无氧测试,通过对两种方法测定的无氧功、心率、血乳酸等指标进行对比分析,旨在确定不同受试对象可行训练的测试方法,为在体育科研及实际应用中提供理论依据。  相似文献   

12.
Aerodynamic efficiency is one of the important criteria for racing bicycle helmets, especially in time trial event. The physical characteristics of a bicycle helmet especially its venting geometry, position and number of vents play a crucial role in the aerodynamic efficiency of the helmet. Despite the importance of this, little information on aerodynamic behaviour of racing bicycle helmets is available. In this study, a series of commercially available time trial helmets were investigated in a wind tunnel environment over a range of wind speeds, and yaw and pitch angles to understand their aerodynamic behaviour. In order to obtain as realistic a data as possible, an instrumented mannequin was used in the wind tunnel testing. The experimental findings indicate that the aerodynamic performance of current production time trial helmets varies significantly. The results also show that helmet length as well as vent geometry and vent area have significant effects on aerodynamic drag of a time trial helmet. A time trial helmet having longer length and smooth vents with minimum vent area can reduce aerodynamic drag significantly.  相似文献   

13.
This study compares the instrumentation and analysis techniques used when determining the power expended pedalling a rope-braked ergometer manufactured by Monark (Sweden) during a low intensity test. Power values were generated by eight subjects. The instrumentation consisted of load cells to measure the rope brake forces, a tachometer to measure the flywheel velocity and instrumented pedal cranks manufactured by Schoberer Rad Messtechnik (SRM). The subjects pedalled a rope-braked ergometer at 60 rev min-1, against a resistance of 3 kg, for 5 minutes. Three different measurements of the mean power were recorded and these were compared with the value given by Monark. The SRM cranks provided two sets of results using different software packages supplied with the cranks. SRM standard software is used for taking measurements during training and cycle races over long time periods. An additional piece of software is provided by SRM called Ptnew, which gives readings of torque and pedal cadence over periods up to 30 seconds. Using the values supplied by Monark each subject generated 180 W of power. The mean power for the eight subjects, measured using the SRM cranks, was 170.36 W (SD 4.11) using the alternative SRM software (Ptnew) over a 30 second period and 173.68 W (SD 2.21) using the standard SRM software. From the direct measurement of the brake forces and flywheel velocity the mean power across the eight subjects was 148.90 W (SD 5.89). The SRM cranks measure the input power, whereas the direct measurement system measures the power output excluding mechanical losses. These values give a figure for the mechanical efficiency for the roped-braked ergometer of 88%. It was found that Monark overestimates the power generated by the subjects when compared with both the SRM systems and the direct measurement instrumentation.  相似文献   

14.
介绍了毽球倒勾技术的训练原则、训练步骤、训练方法、有拦网的训练和倒勾技术训练应注意的事项。  相似文献   

15.
女子中长跑运动员肌氧含量与个体乳酸阈关系的探讨   总被引:8,自引:0,他引:8  
为解决运动训练中生物医学参数的在体、无损、实时监测,利用基于光漫射理论的三波长近红外肌氧监测系统,对受试在功率自行车上做等级性递增负荷运动时局部骨骼肌组织中的肌氧含量的相对变化进行了在体、连续、实时监测与分析,并与血乳酸浓度、运动强度和“个体乳酸阈”等进行对比研究。结果表明:肌氧含量的相对变化与血乳酸浓度、“个体乳酸阈”和运动强度具有密切的关系。为用无损监测肌氧含量的相对变化取代有损监测血乳酸提供了实践依据,为运动员的生理机能评定和运动训练效果的生理学评价引入新的生物学测试技术和方法。  相似文献   

16.
The aim of this study was to compare the physiological and psychological responses of cyclists riding on a hard tail bicycle and on a full suspension bicycle. Twenty males participated in two series of tests. A test rig held the front axle of the bicycle steady while the rear wheel rotated against a heavy roller with bumps (or no bumps) on its surface. In the first series of tests, eight participants (age 19-27 years, body mass 65-82 kg) were tested on both the full suspension and hard tail bicycles with and without bumps fitted to the roller. The second series of test repeated the bump tests with a further six participants (age 22-31 years, body mass 74-94 kg) and also involved an investigation of familiarization effects with the final six participants (age 21-30 years, body mass 64-80 kg). Heart rate, oxygen consumption (VO(2)), rating of perceived exertion (RPE) and comfort were recorded during 10 min sub-maximal tests. Combined data for the bumps tests show that the full suspension bicycle was significantly different (P < 0.001) from the hard tail bicycle on all four measures. Oxygen consumption, heart rate and RPE were lower on average by 8.7 (s = 3.6) ml . kg(-1) . min(-1), 32.1 (s = 12.1) beats . min(-1) and 2.6 (s = 2.0) units, respectively. Comfort scores were higher (better) on average by 1.9 (s = 0.8) units. For the no bumps tests, the only statistically significant difference (P = 0.008) was in VO(2), which was lower for the hard tail bicycle by 2.2 (s = 1.7) ml . kg(-1) . min(-1). The results indicate that the full suspension bicycle provides a physiological and psychological advantage over the hard tail bicycle during simulated sub-maximal exercise on bumps.  相似文献   

17.
Leg power is an essential component for success in sports and athletic performance. Therefore, the leg power measurement may help athletes, coaches, athletic trainers, and rehabilitation specialists in selecting, treating, and training athletes for a specific sport. Using a conventional 'jump and reach' test, one can accurately predict the leg power and success in anaerobic-type sports. Nineteen untrained male subjects performed 'jump and reach' vertical jumps on a force platform. Power values were calculated from the force versus time data obtained from the force platform. A regression equation was obtained to predict the power values using the weight of an individual and the 'jump and reach' height as independent variables. The regression equation is given by p = -666.3 + 14.74 [Mass (kg)] + 1925.72 [Height (m)]; [R-square = 0.69, p < 0.05].  相似文献   

18.
Leg Power     
Leg power is an essential component for success in sports and athletic performance. Therefore, the leg power measurement may help athletes, coaches, athletic trainers, and rehabilitation specialists in selecting, treating, and training athletes for a specific sport. Using a conventional ‘jump and reach’ test, one can accurately predict the leg power and success in anaerobic‐type sports. Nineteen untrained male subjects performed ‘jump and reach’ vertical jumps on a force platform. Power values were calculated from the force versus time data obtained from the force platform. A regression equation was obtained to predict the power values using the weight of an individual and the ‘jump and reach’ height as independent variables. The regression equation is given by p = ‐666.3+14.74 [Mass (kg)] +1925.72 [Height (m)]; [R‐square = 0.69, p<0.05].  相似文献   

19.
Abstract

The aim of this study was to compare the physiological and psychological responses of cyclists riding on a hard tail bicycle and on a full suspension bicycle. Twenty males participated in two series of tests. A test rig held the front axle of the bicycle steady while the rear wheel rotated against a heavy roller with bumps (or no bumps) on its surface. In the first series of tests, eight participants (age 19 – 27 years, body mass 65 – 82 kg) were tested on both the full suspension and hard tail bicycles with and without bumps fitted to the roller. The second series of test repeated the bump tests with a further six participants (age 22 – 31 years, body mass 74 – 94 kg) and also involved an investigation of familiarization effects with the final six participants (age 21 – 30 years, body mass 64 – 80 kg). Heart rate, oxygen consumption ([Vdot]O2), rating of perceived exertion (RPE) and comfort were recorded during 10 min sub-maximal tests. Combined data for the bumps tests show that the full suspension bicycle was significantly different (P < 0.001) from the hard tail bicycle on all four measures. Oxygen consumption, heart rate and RPE were lower on average by 8.7 (s = 3.6) ml · kg?1 · min?1, 32.1 (s = 12.1) beats · min?1 and 2.6 (s = 2.0) units, respectively. Comfort scores were higher (better) on average by 1.9 (s = 0.8) units. For the no bumps tests, the only statistically significant difference (P = 0.008) was in [Vdot]O2, which was lower for the hard tail bicycle by 2.2 (s = 1.7) ml · kg?1 · min?1. The results indicate that the full suspension bicycle provides a physiological and psychological advantage over the hard tail bicycle during simulated sub-maximal exercise on bumps.  相似文献   

20.
ABSTRACT

The purpose of the study was to assess the validity and inter-bike reliability of 10 Wattbike cycle ergometers, and to assess the test–retest reliability of one Wattbike. Power outputs from 100 to 1000 W were applied using a motorised calibration rig (LODE) at cadences of 70, 90, 110 and 130 rev · min?1, which created nineteen different intensities for comparison. Significant relationships (P < 0.01, r2 = 0.99) were found between each of the Wattbikes and the LODE. Each Wattbike was found to be valid and reliable and had good inter-bike agreement. Within-bike mean differences ranged from 0.0 W to 8.1 W at 300 W and 3.3 W to 19.3 W at 600 W. When taking into account the manufacturers stated measurement error for the LODE (2%), the mean differences were less than 2%. Comparisons between Wattbikes at each of the nineteen intensities gave differences from 0.6 to 25.5 W at intensities of 152 W and 983 W, respectively. There was no significant difference (P > 0.05) between the measures of power recorded in the test–retest condition. The data suggest that the Wattbike is an accurate and reliable tool for training and performance assessments, with data between Wattbikes being able to be used interchangeably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号