首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
解无理方程容易产生增根,在验根时要注意一个问题:所求到的解既要使方程中每一个根式有意义,又要使方程两边的值相等,这样的值才是原方程的解。目前,在学生中似乎存在这样一个问题:验根时只考虑根式有无意义,较少考虑方程左右两边的值是否相等,认为求出的解能使各根式有意义就一定是原方程的解,其实否也。如:方程(2x~2-3x+2)~1/2-(2x~2+x-1)~1/2=1经过移项、两边乘方,可求得x_1=1/2或x_2=2.  相似文献   

2.
众所周知,在解根式方程时,为了去掉方程里含有未知数的根式,把根式方程化为有理方程,必须将方程的两边乘方相同的次数。如解方程(2x~2+7x)~(1/2)-x-2=0 解:移项,得(2x~2+7x)(1/2)=x+2两边平方,得2x~2+7x=x~2+4x+4,整理得  相似文献   

3.
无理方程解法很多,许多书刊都作过介绍,如数学通报1979年第6期曾载《无理方程的几种特殊解法》一文。我们在教学中还用过以下几种解法,介绍于下。一分母有理化例1 解方程(x+1)~(1/2)-(x-1)~(1/2)/(x+1)~(1/2)+(x-1)~(1/2)=2-x 这个方程的左边有四个无理式(二次根式),若两边同时平方,则会出现更复杂的无理式。如果我们将左边分母有理化,就可以使解法简化。解分母有理化并把原方程变形为  相似文献   

4.
初中《代数》第三册11.9,在解无理方程时指出:“为了把无理方程变形为有理方程,需要将方程的两边都乘方相同的次数,这样就有产生增根的可能。”怎样引导学生对上述这句话进行深化理解呢?我们从以下三个方面作了补充说明: 1.将方程的两边都平方或偶次乘方时,增根赤源于乘数的有理化因式的零点。例1 解方程(x-2)~(1/2)=8-x ①解:方程两边平方,得x-2=(8-x)~2 ②即x~2-17x+66=0,∴x_1=6,x_2=11。  相似文献   

5.
初中《代数》第三册P135习题7(2)有这样一道题:解方程。(x+2/x-1)~(1/2)+(x-1/x+2)~(1/2)=5/2.按照常规方法求解,首先需把方程左边一项移到右端,再将两边平方,消去一个根号;合并整理后再次平方,转化为一元二次方程,从而求得原方程的解.  相似文献   

6.
1.去分母时漏乘项. 例1.解分式方程5-x/x-4+1/4-x=1 错解:两边同时乘以最简公分母(x-4)得:5-x-1 =1 即:x=3 检验:x=3时,x-4=3-4=-1≠0 所以:x=3是原方程的根. 错因分析:最简公分母是(x-4),方程的两边同时(x-4)时,右边的1漏乘了(x-4),所以是漏乘项导致错误.  相似文献   

7.
分式方程是每年各地中考的重要考点之一,但在解分式方程的过程中,常出现这样或那样的错误,下面举例归类剖析.一、忽视验根或验根不正确致错例1解方程x-2/x+2-x+2/x-2=16/x~2-4.错解1方程两边同乘(x+2)(x-2),得(x-2)~2-(x+2)~2=16.解这个方程,得x=-2,  相似文献   

8.
<正>八年级上学期(人教版)学习了解分式方程,常常会遇到下列情况.例1解分式方程1/(x-5)=10/(x2-25).(1)解在方程两边乘最简公分母(x-5)(x+5)得到整式方程,x+5=10,(2)解之得x=5.将x=5代入原方程检验,发现这时分母x-5和x2-25).(1)解在方程两边乘最简公分母(x-5)(x+5)得到整式方程,x+5=10,(2)解之得x=5.将x=5代入原方程检验,发现这时分母x-5和x2-25的值都为0,相应的分式无意义.因此,x=5虽是整式方程x+5=10的解,  相似文献   

9.
某出版社的义务教育标准实验教科书《数学》(七年级下册)“分式方程”一节中的例1如下:例1 解分式方程(x+3)/(2x-4)=3/4.解:方程两边同乘4(2x-4),得4(x+3)=3(2x-4).去括号,得4x+12=6x-12.移项,合并同类项,得2x=24.∴x=12.把 x=12代入原方程检验,  相似文献   

10.
1.忽视方程的同解 例1 解方程:(x-1)(x-2)=x-1. 错解:两边除以(x-1),得 x-2=1,x=3. 评注:忽视了方程的同解,方程两边除以(x-1)就可能导致丢根x=1.为此,把原式整理成(x-1)(x-2-1)=0. ∴x_1=1,x_2=3为所求. 例2 解方程:(x a)/(x-b) (x b)/(x-a)=2. 错解:两边同乘以(x-b)(x-a),有 (x a)(x-a) (x b)(x-b) =2(x-a)(x-b), 即2(x-a)x=(a b)~2. ∴当a b≠0时,x=(a b)/2.  相似文献   

11.
第一试一、解方程:(x+3)~(1/2)=|x-2|-1.解:先限定 x≥2:这时|x-2|=x-2,原方程化为(x+3)~(1/2)=x-3,x+3=x~2-6x+9,∴x~2-7x+6=0,(x-6)(x-1)=0,∴x_1=6,x_2=1(x_2不合我们的限定,舍  相似文献   

12.
一、平方法例1 已知x+y=,x-y=,求xy的值. 分析:观察本题的结构特点,易想到两边平方后,既能出现xy又能简化二次根式. 解:把已知两式两边分别平方,得 (x+y)2=75~(1/2)-3~(1/2), (x-y)2=75~(1/2)-3~(1/2),  相似文献   

13.
本文介绍解无理方程的八种方法,供读者参考。 一、观察法。不解方程,用算术根的概念及不等式的性质判断方程的解。 例1.解下列方程 (1)(2-x)~(1/2) (x-3)~(1/2)=4; (2)(x~2-6x 9)~(1/2) 解(1) 由 2-x≥0,x-3≥0有x≤2且x≥3,无解。 (2)(x~2-6x 9)~(1/2)=[(x-3)~2]~(1/2)=|x-3|。原方程为 |x-3|=x-3。 解为x≥3。  相似文献   

14.
在实数范围内解无理方程,通常是把方程两边乘方同一次数,化为有理方程来解的,但对于形如 ax~2+bc+c+x(a_1x~2+b_1x+c_1)~(1/2)=0, (1)的无理方程,当c≠0时,若两边平方,一般会化为一个高于二次的整式方程,而这样的整式方程是中学生所不易解出的。本文运用不超过现行中学数学教材中的知识,从解决两个例子并通过对这两个特例的剖析入手,推  相似文献   

15.
在中学数学中,对绝对值方程|x-α|±|x-β|=2m的求解,常采用“零点分段讨论法”,用这种方法比较繁琐。我们现通过例题介绍一种简洁方法。例1 解方程|x-1|+|x-3|=10. 解:原方程变形为 (((x-1)~2+O~2)~(1/2))+(((x-3)~2+O~2)~(1/2))=10。以y~2代换O~2,则 (((x-1)~2+y~2)~(1/2))+(((x-3)~2+y~2)~(1/2))=10。  相似文献   

16.
一九七七年中国科技大学招生有这样一道试题,解方程(5+x)~(1/3)+(5-x)~(1/3)=5~(1/3)学生不难求出方程的二根是:x=±(10)/9 (21)~(1/2)。但把这两个根代入原方程验算,却要花很大的气力。这里就提出了这样一个问题,解这类根式方程时,把方程两边立方会不会产生增根?如果有增根,又是怎样产生的?  相似文献   

17.
妙解方程     
题目解方程(2x-1)~(1/2)+(2-3x)~(1/2)+(6x~2-7x+2)~(1/2)=x~(1/2).分析本题若采取常用的方法——两边平方,移项、合并同类项、再平方,……,将会有大量繁杂的计算,并且很可能有错误.我们利用根式的性质——被开方数不小于0,本题即可获  相似文献   

18.
解分母部分含有根式的无理方程,通常的方法是化无理为有理,化分式为整式,但有时运算量较大,笔者结合自己的教学实践,归纳了这类无理方程解法的一些方法和技巧。一利用函数的定义域和值域 [例1] 解方程 1/((x~2)+5x-14-1)~(1/2)-1/(2-(x+7)~(1/2)=((2-x+5)~(1/2)))/(5~(1/2))-1/(5~(1/2))分析,观察三个根式内部的关系:x~2+5x-14=(x+7)(x-2),试着先讨论末知数x的取值范围。  相似文献   

19.
解无理方程,通常是采用两边平方的办法。但这样做往往要进行两次以上的平方,出现高次方程,给解方程带来困难。本文介绍另一种解法——“平方差法”。先看例1 解方程(x~2+x-2)~(1/2)-(x~2+x-5)~(1/2)=1 (1) 解:由恒等式((x~2+x-2)~(1/2))~2-((x~2+x-5)~(1/2))~2=3 (2) (2)÷(1)得(x~3+x-2)~(1/2)+(x~2+x-5)~(1/2)=3 (3) (1)+(3)化简得(x~2+x-2)~(1/2)=2 (4) 两边平方整理得x~2+x-6=0 解得x_1=2,x_2=-3。经检验知,x_1=2,x_2=-3都是原方程的根。用这种方法解无理方程,虽然避免了高次方程的出现,但是有可能遗根。请看例2 解方程(x~2+5x-6)~(1/2)+2=(x~2+x-2)~(1/2)+22~(1/2) 解:将原方程变形为(x~2+5x-6)~(1/2)-(x~2+x-2)~(1/2)  相似文献   

20.
在熟练掌握一元一次方程解法的基础上,若能抓住方程特征,并根据不同特征得到巧解。一、巧用乘法例1解方程0.25x=2.分析:因0.25×4=1,故两边同乘以4要比两边除以0.25简便易求。解:两边同乘以4,得x=8.二、直接加减例2解方程191z+72=92z-75.分析:常规方法是先去分母,注意到191z-29z=z,-75-27=-1,直接移项加减更快。解:移项,得191z-92z=-75-72,∴z=-1.三、巧对消例3解方程x-31[x-31(x-9)]=19(x-9).分析:从整体上观察方程两边,左边先去中括号有91(x-9)这一项,这可与右边的相同项对消。解:去中括号,得x-31x+91(x-9)=91(x-9),∴x-31x=0,故x=0.四、…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号