首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文讨论求函数值域的八种方法:一、利用函数的单调性求值域若函数y=f(x),x∈[a,b]是单调函数,则函数y=f(x)的值域是[f(b),f(a)]或[f(a),f(b)]。  相似文献   

2.
现行中学教材对复合函数的初等性质未作专门介绍。本文拟给出若干简捷的判别法则,以简化判断手续。定义:设函数y=F(u)的定义域为U_1,函数u=f(x)的值域为U_2,记U=U_1∩U_2,D={x|x∈R,f(x)∈U},则以D为定义域、以F[f(x)]为对应法则的函数y=F[f(x)]叫做D上的一个复合函数。为叙述方便计,构成复合函数的每一次复合步骤所形成的函数,可形象地称为该复合函数的一“层”函数是D上的递增(或递减)函数,若D  相似文献   

3.
一、问题的提出近期出版的“三点一测”数学丛书,数学题典等书,在讲到复合函数单调性时,其中都有这样一段文字:“一般地,y=f[g(x)]中,如果t=g(x)在区间[a,b]上是单调增(减)函数且y=f(t)在区间(g(a),g(b))[(或在(g(b),g(a))]上是单调函数,那么y=[g(x)]在[a,b]上具有单调性。”且有如下结论:  相似文献   

4.
几乎所有的微积分教科书都论述了下列复合函数的连续性定理: 设函数y=g(z)在z_0点连续,且函数z=f(x)在点x_0连续,z_0=f(x_0),又设复合函数y=g[f(x)]在点x=x_0的某一领域内是有定义的,则复合函数y=g[f(x)]必在x_0处连续。上述定理告诉我们:连续函数的复合函数仍旧是连续函数。现在问:关于复合函数的极限问题,也有类似的结论吗? 为回答这个问题,我们给出如下定理。  相似文献   

5.
本文将推广关于复合函数单调性的结论,并得到用换元法来解决较为复杂函数的单调性的一般方法.关于复合函数的单调性,大家已熟悉如下结论:若y=f(x),x=g(t),x∈[m,n],t∈[a,b]都是单调函数,则复合函数y=f[g(t)]也是单调函数,并且当外层函数y=f(x)在[m,n]上为增  相似文献   

6.
一、试题呈现设函数f(x)=x2+2ax+a,若函数f(x)与函数f[f(x)]的值域相同,则实数a的取值范围为.第一步:分析f(x)的单调性与最值,易知f(x)在(-∞,-a)上递减,在(-a,+∞)上递增,f(x)min=f(-a)=a-a2,∴f(x)的值域是[a-a2,+∞).第二步:换元分析两函数.设t=f(x),则f[f(x)]=f(t),函数f(t)在t∈(-∞,-a)上递减,在t∈(-a,+∞)上递增,则y=f(t)(t≥a-a2)的值域也是[a-a2,+∞).  相似文献   

7.
一、求简单复合函数单调区间定理:设函数u=g(x)的值域为N.1.若函数y=f(u)在N上为增函数,则u=g(x)的单调增(减)区间就是函数y=f[g(x)]的单调增(减)区间.2.若函数y=f(u)在N上为减函数,则u=g(x)的单调增(减)区间就是y=f[g(x)]的单调减(增)区间.本文根据上述定理归纳出一个比较容易的求复合函数单调区间的一般方法,其步骤是:(1)在y=f[g(z)](复合函数)中,换元即令u=g(x)(中间函数),则y=f(u)(原函数);(2)求出y=f(u)的单调区间N_i(i=1,2,…,n)并判定出增减;(3)求出使u=g(x)∈N_i的x范围M:(4)求  相似文献   

8.
求复合函数y=f[g(x)]的单调性,可按以下步骤:①合理地分解成两个基本初等函数 y=f(u)、u=g(x);②分别求出各个函数的定义域;③分别确定分解成的两个基本初等函数的单调区间;④若两个基本初等函数在对应区间上的单调性是同增或同减,则y=f[g(x)]为增函数.  相似文献   

9.
秦德义 《天中学刊》2002,17(2):106-106
研究函数 ,主要是研究函数的性质 .近年来 ,高考试题中抽象函数占有相当的比重 ,给出抽象函数的方法除结构关系式外 ,更重要的则是给出对称性、奇偶性、周期性这“三性”中的两个 .利用已知的两性能否推出第三性呢 ?我们有以下几个命题 .命题 1 偶函数若有非 y轴的对称轴 x=a,则必为周期函数 .证 :设 y=f (x)满足 f (x) =f (- x) ,f (x) =f (2 a- x)(a≠ 0 ) ,则f (x) =f (2 a- x) =f [- (x- 2 a) ]=f (x- 2 a) .可见 ,周期 T=|2 a|.命题 2 奇函数若有非 y轴的对称轴 x=a,则必为周期函数 .证 :设 y=f(x)满足 f(x) =- f(- x) ,f(x) =f(2 a…  相似文献   

10.
1 复合函数“还原”的意义复合函数是一个重要的数学概念 ,给出两个函数 y=f(u) ,u=g(x) ,将前者的 u用后者代替 ,可以得到 y=f[g(x) ],我们把函数 y=f[g(x) ]叫做函数 y=f(u)和 u=g(x)的复合函数 .x叫自变量 ,u叫中间变量 ,y是因变量 .为了区别 ,我们把函数 y=f(u)叫外函数 ,函数 u=g(x)叫内函数 .已知外函数 f(x)和内函数 g(x) ,求复合函数 f[g(x) ]的过程叫函数的复合 .和复合反过来 ,就是复合函数的分解 ,就是给出一个函数 ,将它看成某两个或几个函数的复合 .这里准备讨论的是所谓的复合函数的“还原”.为了说明“还原”的意义 ,我们先…  相似文献   

11.
用“方程法”求函数的值域   总被引:1,自引:0,他引:1  
1.引理及“方程法”引理设函数y=f(x)的定义域为A,值域为B,又设“关于x的方程y=f(x)在A中有解的y的取值集合”为C,则C=B.证明:一方面,设6∈C,则由集合C的定义可知,关于x的方程6=f(x)在A中一定有实数  相似文献   

12.
教学难点的阶梯式处理   总被引:4,自引:0,他引:4  
先来看一个例子:已知f(2x 1)=x^2-2x,求函数y=f(x)的表达式.像这类“已知复合函数f[g(x)]和g(x)的表达式,求f(x)”的习题,在高中数学教学中是十分常见的.这类题的一般处理方法是:令t=2x 1,则x=t-1/2,代入原式即得f(x)的表达式.这种解法对于初学者来说是难以理解的,  相似文献   

13.
一、利用函数的单调性求值域如果y=f(x),x∈[a,b],是单调函数,则由函数的单调性可知y=f(x)的值域为[f(a),f(b)]。例1.已知:y=lg(x+1)+5,x∈[0,99]。求函数的值域。  相似文献   

14.
常用于判别函数图象对称性的命题可归纳如下:命题1 若函数y=f(x)满足f(a x)=f(b-x),则y=f(x)的图象关于直线x=a b2对称.证 在y=f(x)图象上取A(a x0,y0),B(b-x0,y0),则AB中点为(a b2,y0),且对任一x0都成立,由x0任意性可知f(x)的图象关于直线x=a b2对称.推论1 若函数y=f(x)满足f(a ωx)=f(b-ωx),则y=f(ωx)关于x=12ω(a b)对称,即y=f(x)关于x=a b2对称.证 设ωx=t,则f(a t)=f(b-t),从而函数y=f(t)关于t=a b2对称,即y=f(ωx)关于直线x=a b2ω对称,或y=f(x)关于直线x=a b2对称.命题2 函数y=f(x)若满足f(a x)=-f(b-x),则y=f(x)的图象关于…  相似文献   

15.
求简单复合函数的单调区间是高中数学的一个重点,对中学生而言,却又是一个难点.鉴于此,有必要对其解法作一点儿探讨.求函数 y=f[g(x)]的单调区间的解题步骤:(1)设 t=g(x),其值域记为 I_1;则 y=f(t),记其定义域为 I_2;  相似文献   

16.
在高中数学《函数》一章的学习中,我们经常会遇到形如以下题型的轴对称问题:[问题1]设x∈R,则函数y=f(1-x)和y=f(1+x)的图象关于().A.直线x=0对称B.直线x=1对称C.直线y=0对称D.直线y=1对称[问题2]设x∈R,函数y=f(x)满足f(1-x)=f(1+x),则y=f(x)的图象关于().A.直线x=0对称B.直线x=1对称C.直线y=0对称D.直线y=1对称有很多同学会认为这两道题的本质相同,答案都是B.而事实上,它们是两类不同的轴对称问题:前者是两个函数图象之间的对称问题,后者是一个函数图象内部的对称问题.为了让学生能够认识这类问题的本质,本文就这类问题作出探讨.[命…  相似文献   

17.
函数是中学数学的重要内容。对于没有具体给出函数解析式的问题,学生感到非常抽象、复杂多变、难以理解,解题时束手无策,本文将这一问题归为六类,下面举例介绍给读者。一函数的定义域问题当函数y=f(x)的自变量为φ(x)而使函数成为复合函数y=f[φ(x)]时,苦y=f(x)的定义域是[a,b](a  相似文献   

18.
互为反函数的两个函数的本质特征是:x与y交换,即函数y=f(x)与x=f(y)互为反函数,且x=f(y)与y=f-1(x)为同一函数,利用这个本质特征可以免求反函数,并解决以下一系列相关问题.1·互为反函数解析式间的关系问题【例1】设第一个函数y=f(x)的反函数是第二个函数,而第三个函数的图像与  相似文献   

19.
型如,x∈[α,β],(其中f(x)-g(x)=a)的函数的值域可用如下方法妙求: 设t=则原函数可转化为然后利用函数y=x 1/x的性质求解.  相似文献   

20.
让我们看下面两个问题及其解答 :问题 1 :已知函数 y =f (2 x)的定义域为[1 ,2 },求函数 y =f (log2 x)的定义域 .[1]原解 :令 u =2 x,因为 y =f (2 x)的定义域为 [1 ,2 ],所以 1≤ x≤ 2 ,2≤ u≤ 4,所以函数 y =f (u)的定义域为 [2 ,4],由 2≤ log2 x≤ 4得 4≤ x≤ 1 6 ,故函数 y =f (log2 x)的定义域为 [4,1 6 ]问题 2 :已知 f (x + 1 ) =3 x + 1 ,求f (x)原解 :令 t=x + 1 ,则 t∈ [1 ,+∞ ) ,所以 x =(t-1 ) 2 ,所以 f (t) =3 (t-1 ) 2 + 1 =3 t2 -6 t+ 4 ,所以 f (x) =3 x2 -6 x + 4 ,x∈ [1 ,+∞ ) .对以上两个问题及其解答 ,相信大…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号