首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A rapid, inexpensive method using alkoxysilanes has been developed to selectively coat the interior of polydimethylsiloxane (PDMS) microfluidic channels with an integral silicaceous layer. This method combines the rapid prototyping capabilities of PDMS with the desirable wetting and electroosmotic properties of glass. The procedure can be carried out on the open faces of PDMS blocks prior to enclosure of the channels, or by flowing the reagents through the preformed channels. Therefore, this methodology allows for high-throughput processing of entire microfluidic devices or selective modification of specific areas of a device. Modification of PDMS with tetraethoxysilane generated a stable surface layer, with enhanced wettability and a more stable electroosmotic flow rate than native PDMS. Modification of PDMS with 3-aminopropyltriethoxysilane generated a surface layer bearing amine functionalities allowing for further chemical derivatization of the PDMS surface.  相似文献   

2.
The role of circulating tumor cells (CTCs) in disease diagnosis, prognosis, monitoring of the therapeutic efficacy, and clinical decision making is immense and has attracted tremendous focus in the last decade. We designed and fabricated simple, flat channel microfluidic devices polydimethylsiloxane (PDMS based) functionalized with locked nucleic acid (LNA) modified aptamers (targeting epithelial cell adhesion molecule (EpCAM) and nucleolin expression) for quick and efficient capture of CTCs and cancer cells. With optimized flow rates (10 μl/min), it was revealed that the aptamer modified devices offered reusability for up to six times while retaining optimal capture efficiency (>90%) and specificity. High capture sensitivity (92%) and specificity (100%) was observed in whole blood samples spiked with Caco-2 cells (10–100 cells/ml). Analysis of blood samples obtained from 25 head and neck cancer patients on the EpCAM LNA aptamer functionalized chip revealed that an average count of 5 ± 3 CTCs/ml of blood were captured from 22/25 samples (88%). EpCAM intracellular domain (EpICD) immunohistochemistry on 9 oral squamous cell carcinomas showed the EpICD positivity in the tumor cells, confirming the EpCAM expression in CTCs from head and neck cancers. These microfluidic devices also maintained viability for in vitro culture and characterization. Use of LNA modified aptamers provided added benefits in terms of cost effectiveness due to increased reusability and sustainability of the devices. Our results present a robust, quick, and efficient CTC capture platform with the use of simple PDMS based devices that are easy to fabricate at low cost and have an immense potential in cancer diagnosis, prognosis, and therapeutic planning.  相似文献   

3.
This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device.  相似文献   

4.
Poly(dimethylsiloxane) or PDMS is an excellent material for replica molding, widely used in microfluidics research. Its low elastic modulus, or high deformability, assists its release from challenging molds, such as those with high feature density, high aspect ratios, and even negative sidewalls. However, owing to the same properties, PDMS-based microfluidic devices stretch and change shape when fluid is pushed or pulled through them. This paper shows how severe this change can be and gives a simple method for limiting this change that sacrifices few of the desirable characteristics of PDMS. A thin layer of PDMS between two rigid glass substrates is shown to drastically reduce pressure-induced shape changes while preserving deformability during mold separation and gas permeability.  相似文献   

5.
Li G  Luo Y  Chen Q  Liao L  Zhao J 《Biomicrofluidics》2012,6(1):14118-1411816
This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device.  相似文献   

6.
In this paper a method of electrospinning conducting and nonconducting biphasic Janus nanofibers using microfluidic polydimethylsiloxane (PDMS)-based manifolds is described. Key benefits of using microfluidic devices for nanofiber synthesis include rapid prototyping, ease of fabrication, and the ability to spin multiple Janus fibers in parallel through arrays of individual microchannels. Biphasic Janus nanofibers of polyvinylpyrrolidone (PVP)+polypyrrole (PPy)∕PVP nanofibers with an average diameter of 250 nm were successfully fabricated using elastomeric microfluidic devices. Fiber characterization and confirmation of the Janus morphology was subsequently carried out using a combination of scanning electron microscopy, energy dispersion spectroscopy, and transmission electron microscopy.  相似文献   

7.
Integration of microfluidic devices with pressure-driven, self-powered fluid flow propulsion methods has provided a very effective solution for on-chip, droplet blood testing applications. However, precise understanding of the physical process governing fluid dynamics in polydimethylsiloxane (PDMS)-based microfluidic devices remains unclear. Here, we propose a pressure-driven diffusion model using Fick''s law and the ideal gas law, the results of which agree well with the experimental fluid dynamics observed in our vacuum pocket-assisted, self-powered microfluidic devices. Notably, this model enables us to precisely tune the flow rate by adjusting two geometrical parameters of the vacuum pocket. By linking the self-powered fluid flow propulsion method to the sedimentation, we also show that direct plasma separation from a drop of whole blood can be achieved using only a simple construction without the need for external power sources, connectors, or a complex operational procedure. Finally, the potential of the vacuum pocket, along with a removable vacuum battery to be integrated with non-PDMS microfluidic devices to drive and control the fluid flow, is demonstrated.  相似文献   

8.
Hydrogels have several excellent characteristics suitable for biomedical use such as softness, biological inertness and solute permeability. Hence, integrating hydrogels into microfluidic devices is a promising approach for providing additional functions such as biocompatibility and porosity, to microfluidic devices. However, the poor mechanical strength of hydrogels has severely limited device design and fabrication. A tetra-poly(ethylene glycol) (tetra-PEG) hydrogel synthesized recently has high mechanical strength and is expected to overcome such a limitation. In this research, we have comprehensively studied the implementation of tetra-PEG gel into microfluidic device technology. First, the fabrication of tetra-PEG gel/PDMS hybrid microchannels was established by developing a simple and robust bonding technique. Second, some fundamental features of tetra-PEG gel/PDMS hybrid microchannels, particularly fluid flow and mass transfer, were studied. Finally, to demonstrate the unique application of tetra-PEG-gel-integrated microfluidic devices, the generation of patterned chemical modulation with the maximum concentration gradient: 10% per 20 μm in a hydrogel was performed. The techniques developed in this study are expected to provide fundamental and beneficial methods of developing various microfluidic devices for life science and biomedical applications.  相似文献   

9.
Cell culture in microfluidic systems has primarily been conducted in devices comprised of polydimethylsiloxane (PDMS) or other elastomers. As polystyrene (PS) is the most characterized and commonly used substrate material for cell culture, microfluidic cell culture would ideally be conducted in PS-based microsystems that also enable tight control of perfusion and hydrodynamic conditions, which are especially important for culture of vascular cell types. Here, we report a simple method to prototype perfusable PS microfluidics for endothelial cell culture under flow that can be fabricated using standard lithography and wet laboratory equipment to enable stable perfusion at shear stresses up to 300 dyn/cm2 and pumping pressures up to 26 kPa for at least 100 h. This technique can also be extended to fabricate perfusable hybrid PS-PDMS microfluidics of which one application is for increased efficiency of viral transduction in non-adherent suspension cells by leveraging the high surface area to volume ratio of microfluidics and adhesion molecules that are optimized for PS substrates. These biologically compatible microfluidic devices can be made more accessible to biological-based laboratories through the outsourcing of lithography to various available microfluidic foundries.  相似文献   

10.
Zhang Z  Zhao P  Xiao G  Watts BR  Xu C 《Biomicrofluidics》2011,5(4):46503-465038
A simple method of irreversibly sealing SU-8 microfluidic channels using PDMS is reported in this paper. The method is based on inducing a chemical reaction between PDMS and SU-8 by first generating amino groups on PDMS surface using N2 plasma treatment, then allowing the amino groups to react with the residual epoxy groups on SU-8 surface at an elevated temperature. The N2 plasma treatment of PDMS can be conducted using an ordinary plasma chamber and high purity N2, while the residual epoxy groups on SU-8 surface can be preserved by post-exposure baking SU-8 at a temperature no higher than 95 °C. The resultant chemical bonding between PDMS and SU-8 using the method create an interface that can withstand a stress that is greater than the bulk strength of PDMS. The bond is permanent and is long-term resistant to water. The method was applied in fabricating SU-8 microfluidi-photonic integrated devices, and the obtained devices were tested to show desirable performance.  相似文献   

11.
A versatile method to fabricate a multilayer polydimethylsiloxane (PDMS) device with micropillar arrays within the inner layer is reported. The method includes an inexpensive but repeatable approach for PDMS lamination at high compressive force to achieve high yield of pillar molding and transfer to a temporary carrier. The process also enables micropillar-containing thin films to be used as the inner layer of PDMS devices integrated with polymer membranes. A microfluidic cell culture device was demonstrated which included multiple vertically stacked flow channels and a pillar array serving as a cage for a collagen hydrogel. The functionality of the multilayer device was demonstrated by culturing collagen-embedded fibroblasts under interstitial flow through the three-dimensional scaffold. The fabrication methods described in this paper can find applications in a variety of devices, particularly for organ-on-chip applications.  相似文献   

12.
Rapid prototyping of polydimethylsiloxane (PDMS) is often used to build microfluidic devices. However, the inherent hydrophobic nature of the material limits the use of PDMS in many applications. While different methods have been developed to transform the hydrophobic PDMS surface to a hydrophilic surface, the actual implementation proved to be time consuming due to differences in equipment and the need for characterization. This paper reports a simple and easy protocol combining a second extended oxygen plasma treatments and proper storage to produce usable hydrophilic PDMS devices. The results show that at a plasma power of 70 W, an extended treatment of over 5 min would allow the PDMS surface to remain hydrophilic for more than 6 h. Storing the treated PDMS devices in de-ionized water would allow them to maintain their hydrophilicity for weeks. Atomic force microscopy analysis shows that a longer oxygen plasma time produces a smoother surface.  相似文献   

13.
Fabrication of microfluidic devices using polydimethylsiloxane   总被引:1,自引:0,他引:1  
Polydimethylsiloxane (PDMS) is nearly ubiquitous in microfluidic devices, being easy to work with, economical, and transparent. A detailed protocol is provided here for using PDMS in the fabrication of microfluidic devices to aid those interested in using the material in their work, with information on the many potential ways the material may be used for novel devices.  相似文献   

14.
Degas-driven flow is a novel phenomenon used to propel fluids in poly(dimethylsiloxane) (PDMS)-based microfluidic devices without requiring any external power. This method takes advantage of the inherently high porosity and air solubility of PDMS by removing air molecules from the bulk PDMS before initiating the flow. The dynamics of degas-driven flow are dependent on the channel and device geometries and are highly sensitive to temporal parameters. These dependencies have not been fully characterized, hindering broad use of degas-driven flow as a microfluidic pumping mechanism. Here, we characterize, for the first time, the effect of various parameters on the dynamics of degas-driven flow, including channel geometry, PDMS thickness, PDMS exposure area, vacuum degassing time, and idle time at atmospheric pressure before loading. We investigate the effect of these parameters on flow velocity as well as channel fill time for the degas-driven flow process. Using our devices, we achieved reproducible flow with a standard deviation of less than 8% for flow velocity, as well as maximum flow rates of up to 3 nL∕s and mean flow rates of approximately 1-1.5 nL∕s. Parameters such as channel surface area and PDMS chip exposure area were found to have negligible impact on degas-driven flow dynamics, whereas channel cross-sectional area, degas time, PDMS thickness, and idle time were found to have a larger impact. In addition, we develop a physical model that can predict mean flow velocities within 6% of experimental values and can be used as a tool for future design of PDMS-based microfluidic devices that utilize degas-driven flow.  相似文献   

15.
Zhang X  Gao X  Jiang L  Zhang X  Qin J 《Biomicrofluidics》2011,5(3):32007-3200710
Cell-microscale pattern surface interactions are crucial to understand many fundamental biological questions and develop regenerative medicine and tissue engineering approaches. In this work, we demonstrated a simple method to pattern PDMS surface by sacrificing poly vinyl pyrrolidone (PVP) electrospinning nanofibers and investigated the growth profile of cells on the modified patterned surfaces using stroma cells. The stromal cells were observed to exhibit good viability on this modified surface and the patterned surface with alignment nanofibers could promote cell migration. Furthermore, the modified PDMS surface was integrated with microfluidic channels to create the microscale spatial factor and was used to explore the cell migration and orientation under this microsystem. Both spatial factor and patterned surfaces were found to contribute to the complex cell orientation under the combined dual effects. This established method is simple, fast, and easy for use, demonstrating the potential of this microsystem for applications in addressing biological questions in complex environment.  相似文献   

16.
We have investigated the bonding stability of various silane treatments for the integration of track-etched membranes with poly(dimethylsiloxane) (PDMS) microfluidic devices. We compare various treatments using trialkoxysilanes or dipodal silanes to determine the effect of the organofunctional group, cross-link density, reaction solvent, and catalyst on the bond stability. We find that devices made using existing silane methods delaminated after one day when immersed in cell culture medium at 37 °C. In contrast, the dipodal silane, bis[3-(trimethoxysilyl)propyl]amine, is shown to yield stable and functional integration of membranes with PDMS that is suitable for long-term cell culture. To demonstrate application of the technique, we fabricated an open-surface device in which cells cultured on a track-etched membrane can be stimulated at their basal side via embedded microfluidic channels. C2C12 mouse myoblasts were differentiated into myotubes over the course of two weeks on these devices to demonstrate biocompatibility. Finally, devices were imaged during the basal-side delivery of a fluorescent stain to validate the membrane operation and long-term stability of the bonding technique.  相似文献   

17.
Multi-cellular tumor spheroids (MCTSs) have been established as a 3D physiologically relevant tumor model for drug testing in cancer research. However, it is difficult to control the MCTS testing parameters and the entire process is time-consuming and expensive. To overcome these limitations, we developed a simple microfluidic system using polydimethylsiloxane (PDMS) microbubbles to culture tumor spheroids under physiological flow. The flow characteristics such as streamline directions, shear stress profile, and velocity profile inside the microfluidic system were first examined computationally using a COMSOL simulation. Colo205 tumor spheroids were created by a modified hanging drop method and maintained inside PDMS microbubble cavities in perfusion culture. Cell viability inside the microbubbles was examined by live cell staining and confocal imaging. E-selectin mediated cell sorting of Colo205 and MDA-MB-231 cell lines on functionalized microbubble and PDMS surfaces was achieved. Finally, to validate this microfluidic system for drug screening purposes, the toxicity of the anti-cancer drug, doxorubicin, on Colo205 cells in spheroids was tested and compared to cells in 2D culture. Colo205 spheroids cultured in flow showed a threefold increase in resistance to doxorubicin compared to Colo205 monolayer cells cultured under static conditions, consistent with the resistance observed previously in other MCTS models. The advantages presented by our microfluidic system, such as the ability to control the size uniformity of the spheroids and to perform real-time imaging on cells in the growth platform, show potential for high throughput drug screening development.  相似文献   

18.
Thiolene-based microfluidic devices have been coupled with surface plasmon resonance imaging (SPRI) to provide an integrated platform to study interfacial interactions in both aqueous and organic solutions. In this work, we develop a photolithographic method that interfaces commercially available thiolene resin to gold and glass substrates to generate microfluidic channels with excellent adhesion that leave the underlying sensor surface free from contamination and readily available for surface modification through self-assembly. These devices can sustain high flow rates and have excellent solvent compatibility even with several organic solvents. To demonstrate the versatility of these devices, we have conducted nanomolar detection of streptavidin-biotin interactions using in situ SPRI.  相似文献   

19.
An easy method is introduced allowing fast polydimethylsiloxane (PDMS) replication of nanofluidic lab-on-chip devices using accurately fabricated molds featuring cross-sections down to 60 nm. A high quality master is obtained through proton beam writing and UV lithography. This master can be used more than 200 times to replicate nanofluidic devices capable of handling single DNA molecules. This method allows to fabricate nanofluidic devices through simple PDMS casting. The extensions of YOYO-1 stained bacteriophage T4 and λ−DNA inside these nanochannels have been investigated using fluorescence microscopy and follow the scaling prediction of a large, locally coiled polymer chain confined in nanochannels.  相似文献   

20.
In this work, we introduce a method for the soft-lithography-based fabrication of rigid microstructures and a new, simple bonding technique for use as a continuous-flow cell lysis device. While on-chip cell lysis techniques have been reported previously, these techniques generally require a long on-chip residence time, and thus cannot be performed in a rapid, continuous-flow manner. Microstructured microfluidic devices can perform mechanical lysis of cells, enabling continuous-flow lysis; however, rigid silicon-based devices require complex and expensive fabrication of each device, while polydimethylsiloxane (PMDS), the most common material used for soft lithography fabrication, is not rigid and expands under the pressures required, resulting in poor lysis performance. Here, we demonstrate the fabrication of microfluidic microstructures from off-stoichiometry thiol-ene (OSTE) polymer using soft-lithography replica molding combined with a post-assembly cure for easy bonding. With finite element simulations, we show that the rigid microstructures generate an energy dissipation rate of nearly 107, which is sufficient for continuous-flow cell lysis. Correspondingly, with the OSTE device we achieve lysis of highly deformable MDA-MB-231 breast cancer cells at a rate of 85%, while a comparable PDMS device leads to a lysis rate of only 40%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号