首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Severe hemolytic anemia in β-thalassemia major and β-thalassemias/HbE (β-TM) patients requires giving blood transfusions. Chronic blood transfusions lead to iron overload consequence with organs damage and risk of alloantibody-formation. This study evaluates the prevalence of red cell alloimmunization and estimates the risk of alloantibody-formation in chronic transfusion-dependent β-TM patients. This cross sectional study was conducted on 143 β-TM patients receiving regular transfusions. We tried to determine the frequency, types and factors influencing red cell alloimmunization in these transfusion-dependent β-TM patients. Median age of 25 (17.5 %) alloantibody-formation β-TM patients was 19.0 years (inter quartile 15.5–24.0 years). The alloantibodies were Anti-Rh (E) (13.1 %), Anti-Rh (D) (0.7 %). Thirty-four patients (23.8 %) of the sample had splenectomies of which 10 (29.4 %) had alloantibody-formation. The interval from first transfusion to antibody development varied from 1.5 to 14 years. Alloantibody-formation correlated with splenectomy and splenectomy correlated with number of transfusion (p < 0.005). In multiple logistic regression used to estimate the risk of alloantibodies formation with splenectomy; OR and 95 % CI were 2.88 (1.07–7.80), p = 0.037 after adjusting for other co-variates. The rate of red cell alloimmunization was 17.5 % and splenectomy associated with increased alloantibody-formation in these transfusion-dependent β-TM patients.  相似文献   

3.
Temperature probes onboard the Chang’E-4 (CE-4) spacecraft provide the first in situ regolith temperature measurements from the far side of the Moon. We present these temperature measurements with a customized thermal model and reveal the particle size of the lunar regolith at the CE-4 landing site to be ∼15 μm on average over depth, which indicates an immature regolith below the surface. In addition, the conductive component of thermal conductivity is measured as ∼1.53 × 10–3 W m–1 K–1 on the surface and ∼8.48 × 10–3 W m–1 K–1 at a depth of 1 m. The average bulk density is ∼471 kg m–3 on the surface and ∼824 kg m–3 in the upper 30 cm of the lunar regolith. These thermophysical properties provide important additional ‘ground truth’ at the lunar far side, which is critical for the future analysis and interpretation of global temperature observations.  相似文献   

4.
Activated carbon fabrics (ACF) mask prevents the absorption of lead and reduce its adverse effects of human health. Aim of this study to know the blood lead level and its effects on heme biosynthesis and hematological parameters after using 2 months activated carbon fabric mask of battery manufacturing workers (BMW). Blood lead level, heme biosynthesis and hematological parameters were measured by using standard method. Blood lead level (P < 0.001, − 13.5%) was significantly decreased, activated δ-aminolevulinic acid dehydratase (P < 0.001, 11.97%) and non-activated δ- aminolevulinic acid dehydratase (P < 0.001, 23.17%) enzyme activity were significantly increased, however, the ratio of activated to Non-activated δ- ALAD (P < 0.001, − 10.13%) was significantly decreased, urinary excretion of δ- aminolevulinic acid (P < 0.001, − 10.49%) and porphobilinogen (P < 0.001, − 7.38%) were significantly decreased after using 2 months ACF mask as compared to before using mask of BMW. Hematological parameters i.e Hb (P < 0.05, 13.42%), PCV (P < 0.05, 7.23%), MCV (P < 0.05, 1.9%) were significantly increased and total WBC count (P < 0.05, − 5.18%) was significantly decreased after using 2 months ACF mask as compared to before using mask of BMW. Two months using ACF mask reduces the blood lead level and improves the δ-ALDH activity and hematological parameters, decreases the urinary excretion of δ-ALA, PBG of battery manufacturing workers. Therefore, the regular using of ACF mask is beneficial to prevent the lead absorption and its adverse effects on human health.  相似文献   

5.
The past Asian precipitation δ18O (δ18Op) records from stalagmites and other deposits have shown significant orbital-scale variations, but their climatic implications and regional differences are still not fully understood. This study, as the first attempt of a 300-kyr transient stable isotope-enabled simulation, investigated the characteristics and mechanisms of the orbital-scale δ18Op variations in three representative regions of Asia: arid Central Asia (CA), monsoonal South Asia (SA) and monsoonal East Asia (EA). The modelling results showed that the variations in the CA, SA and EA annual δ18Op exhibited significant but asynchronous 23-kyr precession cycles. Further analyses revealed that although the precession-induced insolation variation was the ultimate cause of the δ18Op variation in all three regions, the dominant mechanisms and the involved physical processes were distinct among them. For the CA region, the rainy-season (November–March) temperature effect and water vapour transport by the westerly circulation were identified as the key precession-scale processes linking the October–February boreal mid-latitude insolation to the rainy-season or annual δ18Op. In the SA region, the rainy-season (June–September) precipitation amount effect and upstream depletion of the monsoonal water vapour δ18O served as the main mechanisms linking the rainy-season or annual δ18Op to the April–July insolation variation at the precession scale. For the EA region, however, the precession-scale annual δ18Op was mainly controlled by the late-monsoon (August–September) and pre-monsoon (April–May) water vapour transport patterns, which were driven by the July–August insolation and the global ice volume, respectively. These results suggest that the climatic implications of the orbital-scale Asia δ18Op variations are sensitive to their geographic locations as determined by the combined effects of insolation and regional circulation patterns associated with the respective rainy seasons. This study provides new insights into understanding the regional differences and formation mechanisms of the Asian orbital-scale δ18Op variations.  相似文献   

6.
The misfolding of amyloid-β (Aβ) peptides from the natural unfolded state to β-sheet structure is a critical step, leading to abnormal fibrillation and formation of endogenous Aβ plaques in Alzheimer''s disease (AD). Previous studies have reported inhibition of Aβ fibrillation or disassembly of exogenous Aβ fibrils in vitro. However, soluble Aβ oligomers have been reported with increased cytotoxicity; this might partly explain why current clinical trials targeting disassembly of Aβ fibrils by anti-Aβ antibodies have failed so far. Here we show that Au23(CR)14 (a new Au nanocluster modified by Cys-Arg (CR) dipeptide) is able to completely dissolve exogenous mature Aβ fibrils into monomers and restore the natural unfolded state of Aβ peptides from misfolded β-sheets. Furthermore, the cytotoxicity of Aβ40 fibrils when dissolved by Au23(CR)14 is fully abolished. More importantly, Au23(CR)14 is able to completely dissolve endogenous Aβ plaques in brain slices from transgenic AD model mice. In addition, Au23(CR)14 has good biocompatibility and infiltration ability across the blood–brain barrier. Taken together, this work presents a promising therapeutics candidate for AD treatment, and manifests the potential of nanotechnological approaches in the development of nanomedicines.  相似文献   

7.
N-heterocyclic phosphines (NHPs) have recently emerged as a new group of promising catalysts for metal-free reductions, owing to their unique hydridic reactivity. The excellent hydricity of NHPs, which rivals or even exceeds those of many metal-based hydrides, is the result of hyperconjugative interactions between the lone-pair electrons on N atoms and the adjacent σ*(P–H) orbital. Compared with the conventional protic reactivity of phosphines, this umpolung P–H reactivity leads to hydridic selectivity in NHP-mediated reductions. This reactivity has therefore found many applications in the catalytic reduction of polar unsaturated bonds and in the hydroboration of pyridines. This review summarizes recent progress in studies of the reactivity and synthetic applications of these phosphorus-based hydrides, with the aim of providing practical information to enable exploitation of their synthetically useful chemistry.  相似文献   

8.
Methods for assaying lysosomal diseases in dried blood samples are very useful today due to its several advantages related to the stability of samples, its transportation, handled and analysis, and its potential use for newborn screening compared to traditional methods in leucocytes samples. For this reason, it is important to validate these assays before being used in routine laboratory. Because of different in biological markers based on ethnicity, we aimed this study to validation a DBS-based fluorometric assay for measurement of α-l-Iduronidase activity for diagnosis of MPS I patients in Iran. DBS samples were collected from 15 MPS I patients and 60 healthy age matched subjects. Diagnostic value, biological variance and α-l-Iduronidase activity were determined. DBS α-l-Iduronidase activity was significantly higher in male subjects than in female group. Using a cut-off level of 1.08 µmol/spot 20 h, sensitivity and specificity were 100 and 98 %. The linearity of test was proved and we showed that within-run and between run precision were 5.6 and 14.66 %. Measurement of α-l-Iduronidase activity in DBS samples is an accurate test for diagnosis of MPS I and because of its rapid shipping and simplicity to keeping, DBS-based enzyme activity could be considered as a useful diagnostic tool in this disease.  相似文献   

9.
Despite extensive research and several stunning breakthroughs in the synthesis of interlocked molecular species, [3]catenanes, Borromean rings and ring-in-ring complexes are exceedingly rare and their targeted synthesis remains a formidable challenge. Herein, a series of Cp*Rh-based homogeneous and heterogeneous interlocked structures have been prepared by coordination-driven self-assembly, not only including metalla[2]catenanes and molecular Borromean rings, but also linear metalla[3]catenanes and ring-in-ring complexes. The interlocked structures are all based on bithiophenyl groups. The bithiophenyl groups effectively enhance the strength of the inter-ring interactions and play a crucial role in the formation of these interlocked structures. By taking advantage of the strong interaction between π-donor (D) and π-acceptor (A) groups, the electron-deficient methylviologen cation was introduced into a cationic metallarectangle based on bithiophenyl groups. Taking inspiration from these results, a cationic metallarectangle based on A units was threaded into a metallarectangle based on D units, leading to a heterogeneous D–A ring-in-ring structure.  相似文献   

10.
Rationally utilizing and developing synthetic units is of particular significance for the design of high-performance non-fullerene small-molecule acceptors (SMAs). Here, a thieno[3,2-b]pyrrole synthetic unit was employed to develop a set of SMAs (ThPy1, ThPy2, ThPy3 and ThPy4) by changing the number or the position of the pyrrole ring in the central core based on a standard SMA of IT-4Cl, compared to which the four thieno[3,2-b]pyrrole-based acceptors exhibit bathochromic absorption and upshifted frontier orbital energy level due to the strong electron-donating ability of pyrrole. As a result, the polymer solar cells (PSCs) of the four thieno[3,2-b]pyrrole-based acceptors yield higher open-circuit voltage and lower energy loss relative to those of the IT-4Cl-based device. What is more, the ThPy3-based device achieves a power conversion efficiency (PCE) (15.3%) and an outstanding fill factor (FF) (0.771) that are superior to the IT-4Cl-based device (PCE = 12.6%, FF = 0.758). The ThPy4-based device realizes the lowest energy loss and the smallest optical band gap, and the ternary PSC device based on PM6:BTP-eC9:ThPy4 exhibits a PCE of 18.43% and a FF of 0.802. Overall, this work sheds light on the great potential of thieno[3,2-b]pyrrole-based SMAs in realizing low energy loss and high PCE.  相似文献   

11.
Hemoglobin (Hb) Grey Lynn is a Hb variant caused by a substitution of Phe for Leu at position 91 of α1-globin chain, originally described in individual of unknown ethnic background. This article addresses the interaction of Hb Grey Lynn with a non-deletional α+-thalassemia found in Thailand, a hitherto un-described condition. The proband was adult Thai woman referred for investigation of mild anemia with Hb 90 g/L. Hb analyses using low pressure liquid chromatography raised a suspicion of abnormal Hb presence, which was failed to demonstrate by cellulose acetate electrophoresis and capillary electrophoresis. DNA sequencing identified a CTT (Leu) to TTT (Phe) mutation at codon 91 corresponding to the Hb Grey Lynn (Vientiane) [α91(FG3)Leu>Phe (α1) on α1-globin gene and a C deletion between codons 36 and 37 on α2-globin gene causing α+-thalassemia. As compared to those observed in a compound heterozygote for Hb Grey Lynn / α0-thalassemia reported previously, higher MCV (81.7 fL) and MCH (26.3 pg) values with a lower level of Hb Grey Lynn (19.7%) were observed in the proband. The normochromic normocytic anemia observed could be due to the interaction of Hb Grey Lynn with α+-thalassemia. The two mutations could be identified using PCR-RFLP and allele-specific PCR assays developed.  相似文献   

12.
Thalassemia has been recognized by the World Health Organization as important inherited disorders principally impacting on the populations of low income countries. In this report, the prevalence of common β-thalassemia mutations in India was defined in 126 β-thalassemia carrier subjects in a western Indian population mainly from the south-western Maharashtra. The six most common β-thalassemia mutations were detected, which included IVS I-5 (G–C), IVS I-1 (G–T), codon 8–9 (+G), codon 41/42 (–TCTT), Codon 15 (G–A), and 619 bp deletion at 3′ end of β-globin gene. These mutations accounted for 93.66 % in 126 β-thalassemia carrier subjects and 6.34 % remained uncharacterized. Out of 126, 82 (65.07 %) showed the most common (prevalent) type of mutation, IVS I-5 (G–C), followed by IVS I-1 (G–T) showed by 12 (9.52 %) subjects. Three (2.38 %) subjects showed 619 bp deletion, codon 8/9 (+G) and codon 15 (G–A) mutations were present in eight subjects each (6.34 %). Only five (3.96 %) subjects showed codon 41/42 (–TCTT). There were eight (6.34 %) subjects where mutation was not any of the six mutations studied. This study provides the pattern of β thalassemia mutations from south-western Maharashtra, which will help to prevent β-thalassemia using prenatal diagnosis and proper counseling.

Electronic supplementary material

The online version of this article (doi:10.1007/s12291-012-0230-y) contains supplementary material, which is available to authorized users.  相似文献   

13.
The shuttle effect and excessive volume change of the sulfur cathode severely impede the industrial implementation of Li–S batteries. It is still highly challenging to find an efficient way to suppress the shuttle effect and volume expansion. Here, we report, for the first time, an innovative atomic orbital hybridization concept to construct the hierarchical hollow sandwiched sulfur nanospheres with double-polyaniline layers as the cathode material for large-scale high-performance Li–S batteries. This hierarchically 3D, cross-linked and stable sulfur–polyaniline backbone with interconnected disulfide bonds provides a new type and strong intrinsic chemical confinement of sulfur owing to the atomic orbital hybridization of Li 2s, S 3p, C 2p and N 2p. Crucially, such atomic orbital hybridization of sulfur sandwiched in the double sulfur–polyaniline network is highly reversible during the discharge/charge process and can very efficiently suppress the shuttle effect and volume expansion, contributing to a very high capacity of 1142 mAh g–1 and an excellent stabilized capacity of 886 mAh g–1 at 0.2 C after 500 cycles with a suppressed volume expansion and an unprecedented electrode integrity. This innovative atomic orbital hybridization concept can be extended to the preparation of other electrode materials to eliminate the shuttle effect and volume expansion in battery technologies. The present work also provides a commercially viable and up-scalable cathode material based on this strong and highly reversible atomic orbital hybridation for large-scale high-performance Li–S batteries.  相似文献   

14.
HbA1c is used extensively for the diagnosis and management of diabetes mellitus. It constitutes 80% of glycated HbA1(Glycated haemoglobin(GHb)A), and depends upon blood glucose and RBC life span. RBC life span varies with anemia, leading to a consequent alteration in the HbA1c value irrespective of the circulating blood glucose concentration. But to the best of our knowledge no Hb cut offs have been derived for appropriate interpretation of HbA1c. The prevalence of anemia in Indian population is nearly 40% as per its definition by WHO—Hb < 12 g/dL in females and < 13 g/dL in males—with most cases attributable to nutritional deficiencies. Hence, we aimed to identify Hb cut-off for accurate interpretation of HbA1c in presence of deficiency anemias. Partial correlation between random blood glucose (RBG) and HbA1c was studied in 1312 subjects, 470 of whom had deficiency-related anemia]. The data was adjusted for age, sex and Hb. Partial correlation between RBG and HbA1c was highly significant (p < 0.0001) till Hb of 8.1 gm/dL. Significance reduced to p = 0.003 and p = 0.006 as the cut off of Hb reduced to 7.1 gm/dL and 5.0 gm/dL, respectively, but was not lost. Hence, caution in interpretation of HbA1c is not required till an Hb of 5 g/dL.  相似文献   

15.
Most metal–organic frameworks (MOFs) hardly maintain their physical and chemical properties after exposure to alkaline aqueous solutions, thus precluding their use as potential electrode materials for electrochemical energy storage devices. Here, we present the design and synthesis of a highly alkaline-stable metal oxide@MOF composite, Co3O4 nanocube@Co-MOF (Co3O4@Co-MOF), via a controllable and facile one-pot hydrothermal method under highly alkaline conditions. The obtained composite possesses exceptional alkaline stability, retaining its original structure in 3.0 M KOH for at least 15 days. Benefitting from the exceptional alkaline stability, unique structure, and larger surface area, the Co3O4@Co-MOF composite shows a specific capacitance as high as 1020 F g−1 at 0.5 A  g−1 and a high cycling stability with only 3.3% decay after 5000 cycles at 5 A g−1. The as-constructed solid-state flexible device exhibits a maximum energy density of 21.6 mWh cm−3.  相似文献   

16.
Increase in urine albumin excretion rate (AER) precede a fall in glomerular filtration rate in patients developing diabetic chronic kidney disease (CKD). Our results have shown that 7 (50 %) of diabetic and hypertensive individuals with decreased GFR do not have increased AER. In this cross-sectional study, we measured AER of 75 patients with type 2 diabetes and hypertension by immunoturbidimetric method. We correlated the results with eGFR values obtained by Cockcroft–Gault and MDRD method. The method used was not a compensated method. We measured serum creatinine by modified Jaffe’s kinetic method in autoanalyzer XL-600. Analysis of data showed positive correlation between eGFR and microalbuminuria by both the methods with eGFR <60 mL/min/1.73 m2. Pearson’s correlation co-efficient (r) was 0.9 (p = 0.0001) by Cockcroft–Gault formula and 0.69 (p = 0.0063) by MDRD formula. Our results concluded that there was positive correlation between AER and eGFR <60 mL/min/1.73 m2. We have recognized that these two parameters provide a complimentary benefit in management of cases with CKD.  相似文献   

17.
Lithium–sulfur batteries have great potential for high-performance energy-storage devices, yet the severe diffusion of soluble polysulfide to electrolyte greatly limits their practical applications. To address the above issues, herein we design and synthesize a novel polymer binder with single lithium-ion channels allowing fast lithium-ion transport while blocking the shuttle of unnecessary polysulfide anions. In situ UV–vis spectroscopy measurements reveal that the prepared polymer binder has effective immobilization to polysulfide intermediates. As expected, the resultant sulfur cathode achieves an excellent specific capacity of 1310 mAh g−1 at 0.2 C, high Coulombic efficiency of 99.5% at 0.5 C after 100 cycles and stable cycling performance for 300 cycles at 1 C (1 C = 1675 mA g−1). This study reports a new avenue to assemble a polymer binder with a single lithium-ion channel for solving the serious problem of energy attenuation of lithium–sulfur batteries.  相似文献   

18.
Applying metal organic frameworks (MOFs) in electrochemical systems is a currently emerging field owing to the rich metal nodes and highly specific surface area of MOFs. However, the problems for MOFs that need to be solved urgently are poor electrical conductivity and low ion transport. Here we present a facile in situ growth method for the rational synthesis of MOFs@hollow mesoporous carbon spheres (HMCS) yolk–shell-structured hybrid material for the first time. The size of the encapsulated Zeolitic Imidazolate Framework-67 (ZIF-67) is well controlled to 100 nm due to the spatial confinement effect of HMCS, and the electrical conductivity of ZIF-67 is also increased significantly. The ZIF@HMCS-25% hybrid material obtained exhibits a highly efficient oxygen reduction reaction activity with 0.823 V (vs. reversible hydrogen electrode) half-wave potential and an even higher kinetic current density (JK = 13.8 mA cm−2) than commercial Pt/C. ZIF@HMCS-25% also displays excellent oxygen evolution reaction performance and the overpotential of ZIF@HMCS-25% at 10 mA cm−2 is 407 mV. In addition, ZIF@HMCS-25% is further employed as an air electrode for a rechargeable Zn–air battery, exhibiting a high power density (120.2 mW cm−2 at 171.4 mA cm−2) and long-term charge/discharge stability (80 h at 5 mA cm−2). This MOFs@HMCS yolk–shell design provides a versatile method for the application of MOFs as electrocatalysts directly.  相似文献   

19.
Although pure formamidinium iodide perovskite (FAPbI3) possesses an optimal gap for photovoltaics, their poor phase stability limits the long-term operational stability of the devices. A promising approach to enhance their phase stability is to incorporate cesium into FAPbI3. However, state-of-the-art formamidinium–cesium (FA–Cs) iodide perovskites demonstrate much worse efficiency compared with FAPbI3, limited by the different crystallization dynamics of formamidinium and cesium, which result in poor composition homogeneity and high trap densities. We develop a novel strategy of crystallization decoupling processes of formamidinium and cesium via a sequential cesium incorporation approach. As such, we obtain highly reproducible, highly efficient and stable solar cells based on FA1xCsxPbI3 (x = 0.05–0.16) films with uniform composition distribution in the nanoscale and low defect densities. We also revealed a new stabilization mechanism for Cs doping to stabilize FAPbI3, i.e. the incorporation of Cs into FAPbI3 significantly reduces the electron–phonon coupling strength to suppress ionic migration, thereby improving the stability of FA–Cs-based devices.  相似文献   

20.
Grapes are the richest source of antioxidants due to the presence of potent bioactive phytochemicals. In this study, the phytochemical contents, scavenging activities and protective role against H2O2-induced oxidative stress in liver tissue ex vivo of four grape (Vitis vinifera) cultivars extracts, namely Flame seedless (black), Kishmish chorni (black with reddish brown), Red globe (red) and Thompson seedless mutant (green), were evaluated. The total phenolics and flavonoids content in pulp or skin fractions of different grape cultivars were in the range of 47.6–310 mg gallic acid equivalent/g fresh weight (fw), and 46.6–733.3 µg catechin equivalent/g fw respectively. The scavenging activities in skin of different grape varieties against 2,2-diphenyl-1-picrylhydrazyl (44–58 %), hydrogen peroxide (15.3–18.6 %), and hydroxyl radicals (50–85 %), were higher than pulp of the corresponding cultivars. These scavenging activities of grape extracts were found to be significantly (p < 0.01) correlated with the levels of total phenols, flavonoids and ascorbic acid. Liver tissues from goat treated with H2O2 (500 μM) showed significantly decreased GSH content by 42.9 % and activities of catalase by 50 % and glutathione reductase by 66.6 %; while increased thiobarbituric acid reactive substances and nitric oxide level by 2.53- and 0.86-fold, respectively, and activity of glutathione S-transferase by 0.96-fold. Grape skin extracts showed the stronger protective activity against H2O2-induced oxidative stress in liver tissue ex vivo, than its pulp of any cultivar; and the Flame seedless (black) cultivar showed the highest potential. In conclusion, our study suggested that the higher antioxidant potential, phytochemical contents and significant scavenging capacities in pulp and skin of grape extracts showed the protective action of grape extracts against H2O2-induced oxidative stress in liver tissue ex vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号