首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hispanic students, born both inside and outside the United States, comprise over 80% of the US English language learner population. The difference in mathematics achievement among Hispanic students and other populations has been well documented. As a result, it is important to understand the effects of using standards-based mathematics curriculum with high school Hispanic students. Mathematics achievement scores from the Colorado Student Assessment Program and Measurement of Academic Progress for Hispanic 9th and 10th grade students (n = 1,318) who used the Core-Plus Mathematics Program were compared to the progress of other student demographics (n = 2,003) who used the same curriculum. In following the recommendations of the National Research Council (On evaluation curricular effectiveness: judging the effectiveness of K-12 mathematics evaluations. National Academies Press, Washington, DC 2005), a meta-analysis (Glass in Educ Res 5:3–8, 1976) of Hispanic students using National Science Foundation Funded (NSFF) curricula was conducted to contextualize this study’s findings within the findings of previous studies. The results of this study indicated that Hispanic students have shown modest gains; however, their relative position compared to other ethnic groups is unremarkable. The meta-analysis Cohen’s d results ranged from +.673 (SE = .131) to −.670 (SE = .045) with slightly positive effects for Hispanic students using an NSFF curriculum when compared to those not using an NSFF curriculum (.043, SE = .012).  相似文献   

2.
There is opportunity to decrease the frequency of foodborne illnesses by improving food safety competencies and planned behaviors of college students before they begin careers in the food industry. The objectives of this study were to (1) develop a multimedia case study teaching method that provides real world context for food science education; and (2) evaluate the extent to which it improves the intentions of students to implement food safety management systems upon entering the workforce, as well its impact on knowledge gains and students’ abilities to understand complex concepts. The target audience consisted of all participants in an upper‐level undergraduate food safety management systems course (n = 17). A pretest and posttest survey research instrument was developed to measure knowledge gains and also students’ food safety intentions using the framework of the Theory of Planned Behavior. Students experienced significant gains in knowledge, attitude, and intention after completion of the course (P < 0.05). One hundred percent of students agreed that the interactive videos aided in their understanding of food safety concepts. A paired t test suggested that both behavioral control beliefs and attitudes of students toward food safety management significantly increased (P < 0.5) after completion of the case study. These results suggest that integrating multimedia case studies into food science education may enhance food safety behaviors.  相似文献   

3.
When students reason during school science, they often refer to conceptions that are derived from out-of-school experiences and are poor proxies for science orthodoxy. However, for some areas of science, these conceptions represent only a proportion of students' full conceptual knowledge, for tacit understanding exists that is superior to the understanding displayed when reasoning. Noting that tacit understanding is engaged when events are judged as natural or non-natural, the paper is concerned with software that: (a) requires direction and speed of falling objects to be predicted, i.e. a typical science reasoning task that engages conceptual knowledge; (b) presents simulations of predicted motion in the expectation that its naturalness or non-naturalness would be recognised. An evaluation study is reported where children aged 8–12 years worked with the software in contexts that typify computer use in classrooms, i.e. individually under adult guidance (n =? 44 children) or in pairs with a classmate (n = 48 children). They were observed while they did this. Reasoning about object fall was assessed via change from individual pre-tests administered prior to software usage to individual post-tests administered a few weeks afterwards. The children who worked with the software showed greater pre- to post-test gains in conceptual understanding than control children (n =? 47 children), who lacked software experience. The gains were especially marked for the children who worked in pairs. The approach taken is contrasted with traditional approaches to conceptual change in school science, e.g. strategies that rely upon classroom experiments.  相似文献   

4.
The purpose of this work is to share our findings in using video gaming technology to facilitate the understanding of basic electromagnetism with pre-service elementary teachers. To this end we explored the impact of using a game called Supercharged! on pre-service teachers’ understanding of electromagnetic concepts compared to students who conducted a more traditional inquiry oriented investigation of the same concepts. This study was a part of a larger design experiment examining the pedagogical potential of Supercharged! the control group learned through a series of guided inquiry methods while the experimental group played Supercharged! during the laboratory sections of the science course. There was significant difference F(2,134) = 4.8, p < 0.05, η2 = 0.59 between the control and experimental groups on the gains from pre-to-post assessment with an effect size of d = 0.72. However, while students in the experimental group performed better than their control group peers, they rated their knowledge of the topic lower than the control group (M post-control = 3.0, M post-experiment = 2.7), leading to further examination of their laboratory journals. Results of this study show that video games can lead to positive learning outcomes, as demonstrated by the increase in test scores from pre- to post-assessment. Additionally, this study also suggests that a complementary approach, in which video games and hands-on activities are integrated, with each activity informing the other, could be a very powerful technique for supporting student scientific understanding. Further, our findings suggest that video game designers should embed meta-cognitive activities such as reflective opportunities into educational video games to provide scaffolds for students and to reinforce that they are engaged in an educational learning experience.  相似文献   

5.
Monk and Osborne (Sci Educ 81:405–424, 1997) provide a rigorous justification for why history and philosophy of science should be incorporated as an integral component of instruction and a model for how history of science should be used to promote learning of and about science. In the following essay we critique how history of science is used on this model, and in particular, their advocacy of a direct comparison of students’ conceptions of scientific phenomena with those of past scientists. We propose instead an alternative approach that promotes a more active engagement by inviting students to engage in the sort of reasoning that led past scientists to reach insights about scientific phenomena. As an example we describe in detail two lesson plans taken from an eight-class unit developed with reference to the history of research on sickle-cell anemia. These lessons demonstrate how an open-ended, problem-solving approach can be used to help students deepen their understanding of science. Throughout the unit students are invited to explicitly and reflectively consider the implications of their reasoning about the disease for their understanding of nature of science issues. The essay draws attention to how this alternative approach actually more closely aligns with the constructivist rationale Monk and Osborne have articulated. It concludes with a brief summary of empirical research demonstrating the efficacy of this approach.
David W. RudgeEmail:
  相似文献   

6.
Like their students, teachers may hold a variety of naïve conceptions that have been hypothesized to limit their ability to support students’ learning. This study examines whether changes in elementary students’ conceptions are related to their teachers’ content knowledge, attitudes, and understanding of conceptual change. The study takes place in the context of the adoption of a new unit on seasonal change in which students build and use sundials to observe seasonal differences in the apparent motion of the Sun across the sky. A mixed-method approach is used. Data sources include pre- and post-tests for students and teacher interviews and questionnaires. Results indicate that changes in students’ conceptions may be related to their teachers’ knowledge of the content, attitudes toward science, and understanding of conceptual change. One teacher had low attitude toward science and limited knowledge of conceptual change. After instruction, her students’ responses became less accurate but more homogeneous than before instruction. The other teacher had high attitude and moderate knowledge of conceptual change. Her students showed gains from pre- to post-test, including responses that were more scientifically accurate than the teachers’ initial answers.  相似文献   

7.
This study investigated the knowledge gains and attitude shifts attributable to a unique online science education game, Uncommon Scents. The game was developed to teach middle school students about the biological consequences of exposure to toxic chemicals in an environmental science context, as well as the risks associated with abusing these chemicals as inhalants. Middle school students (n = 444) grades six through eight participated in the study consisting of a pre-test, three game-play sessions, and a delayed post-test. After playing the game, students demonstrated significant gains in science content knowledge, with game usability ratings emerging as the strongest predictor of post-test content knowledge scores. The intervention also resulted in a shift to more negative attitudes toward inhalants, with the most negative shift occurring among eighth grade students and post-test knowledge gains as the strongest predictor of attitude change across all grade levels. These findings suggest that the environmental science approach used in Uncommon Scents is an efficacious strategy for delivering both basic science content and influencing perceived harm relating to the inhalation of toxic chemicals from common household products.  相似文献   

8.
There have been substantial reform efforts in science education to improve students’ understandings of science and its processes and provide continual support for students becoming scientifically literate (American Association for the Advancement of Science in Benchmarks for science literacy, Oxford University Press, New York, 1993; National Research Council in Mathematics and science education around the world, National Academy Press, Washington DC, 1996; National Science Teachers Association in NSTA position statement 2000). Despite previous research, it is still unclear whether young children are actually developmentally ready to conceptualize the ideas that are recommended in the reforms (Akerson V, Volrich M (2006) Journal of Research and Science Teaching, 43, 377–394). The purpose of this study was to explore how explicit-reflective instruction could improve young students’ understanding of NOS. During an informal education setting, the authors taught NOS aspects using explicit-reflective instruction. Overall the students participating in the program improved their understanding of the target aspects of NOS through use of explicit reflective instruction. However, the levels of improvement varied across different aspects. Students improved the most in their understanding of the tentative nature of science and the roles of observation in scientific work, although there was still some confusion regarding the distinction between observation and inference. More work needs to be done exploring these specific topics and the role explicit reflective practice can play in identifying the particular problems students have in distinguishing these constructs.  相似文献   

9.
10.
There have been substantial reform efforts in science education to improve students’ understandings of science and its processes and provide continual support for students becoming scientifically literate (AAAS, Benchmarks for science literacy, Oxford University Press, New York, 1993; NRC, National Academy Press, Washington, DC, 1996; NSTA, NSTA position statement: The nature of science, , 2000). Despite previous research, it is still unclear whether young children are actually developmentally ready to conceptualize the ideas that are recommended in the reforms (Akerson and Volrich, J Res Sci Teach 43:377–394, 2006). The purpose of this study was to explore how explicit-reflective instruction could improve young students’ understanding of NOS. During an informal education setting, the authors taught NOS aspects using explicit-reflective instruction. Overall the students participating in the program improved their understanding of the target aspects of NOS through use of explicit reflective instruction. However, the levels of improvement varied across different aspects. Students improved the most in their understanding of the tentative nature of science and the roles of observation in scientific work, although there was still some confusion regarding the distinction between observation and inference. More work needs to be done exploring these specific topics and the role explicit reflective practice can play in identifying the particular problems students have in distinguishing these constructs.  相似文献   

11.
Discrepant questioning is a teaching technique that can help students “unlearn” misconceptions and process science ideas for deep understanding. Discrepant questioning is a technique in which teachers question students in a way that requires them to examine their ideas or models, without giving information prematurely to the student or passing judgment on the student’s model. This strategy prompts students to see the contradictions in their own model. This study focused on the analysis of small group tutoring sessions on human respiration. Individual and small group construction of mental models was analyzed after instructed with a standardized teaching sequence based on model construction and criticism theory (Rea-Ramirez in Model of conceptual understanding in human respiration and strategies for instruction, Dissertation Abstracts International, 59 (10), 5196B, 1998). Analysis provided deeper understanding of the role discrepant questioning played in this construction of understanding and suggested new models of learning.  相似文献   

12.
This paper reports on a two year study designed to investigate how a Web-Based Integrated Science Environment (WISE) project called Plants in Space featuring classroom investigations can enable fifth grade students to increase their understanding of plant growth and development. A multidisciplinary partnership consisting of teachers, scientists, science education researchers, and technology specialists developed this project, tested it in fifth grade, modified it based on the data collected in year one and tested it again. We investigate these two versions of the curriculum and consider how understanding of the material improved with the revised curriculum.Participants were fifth grade students and a fifth grade teacher who was a co-developer of the curriculum and participated in the re-design process at an urban elementary school. An identical pre- and a post-subject matter assessment was administered to all students each year. Interviews and students' in-class work helped clarify the results. Overall, students made significant gains in understanding standards-based science concepts including photosynthesis.  相似文献   

13.
14.
The way in which students view science and its practitioners, particularly during their late elementary and early secondary grade levels, has been at the core of numerous studies dating back to research by Mead & Metraux (Science 126:384–390, 1957). In this study, we used the Draw-a-Scientist Test Checklist developed by Finson, Beaver & Cramond (Sch Sci Math 95(4):195–205, 1995) to explore and document Colombian and Bolivian students’ perceptions of scientists. Despite the wealth of information from years of study, there is a lack of research on images held by students in Latin American nations. This study involved Colombian and Bolivian students (N = 1,017) in 5th to 11th grades and was aimed at providing an original account of how these students picture scientists and science. Results suggest differences on how students perceive scientists based on nationality, grade and school type. We discuss how features may be associated with educational and socioeconomic status in each school community.  相似文献   

15.
This study developed three forms of computer-based multimedia, including Static Graphics (SG), Simple Learner-Pacing Animation (SLPA), and Full Learner-Pacing Animation (FLPA), to assist students in learning topographic measuring. The interactive design of FLPA allowed students to physically manipulate the virtual measuring mechanism, rather than passively observe dynamic or static images. The students were randomly assigned to different multimedia groups. The results of a one-way ANOVA analysis indicated that (1) there was a significant difference with a large effect size (f = .69) in mental effort ratings among three groups, and the post-hoc test indicated that FLPA imposed less cognitive load on students than did SG (p = .007); (2) the differences of practical performance scores among groups reached the statistic significant level with a large effect size (f = .76), and the post-hoc test indicated that FLPA fostered better learning outcomes than both SLPA and SG (p = .004 and p = .05, respectively); (3) the difference in instructional efficiency that was computed by the z-score combination of students’ mental effort ratings and practical performance scores among the three groups obtained the statistic significant level with a large effect size (f = .79), and the post-hoc test indicated that FLPA brought students higher instructional efficiency than those of both SLPA and SG (p = .01 and .005, respectively); (4) no significant effect was found in instructional time-spans between groups (p = .637). Overall, FLPA was recommended as the best multimedia form to facilitate topographic measurement learning. The implications of instructional multimedia design were discussed from the perspective of cognitive load theory.  相似文献   

16.
In this article, we describe an innovative capstone course for preservice K-8 teachers integrating action research and a unifying theme in science (AAAS in Science for all Americans. Oxford University Press, New York, 1989; NRC in National science education standards. National Academy Press, Washington, DC, 1996). The goals of the capstone course are to increase student knowledge of the unifying theme, improve written communication skills, and introduce students to educational research. We provide evidence that each of these goals is met. Student growth in theme knowledge is demonstrated through concept maps, questionnaires, and previously reported assessments. Improved writing ability is demonstrated using the spelling and grammar checking feature of Microsoft Word. The analysis of action research reports demonstrates that students are able to connect their action research project results to previous research.  相似文献   

17.
This paper reports multi-layered analyses of student learning in a science classroom using the theoretical lens of Distributed Cognition (Hollan et al. 1999; Hutchins 1995). Building on the insights generated from previous research employing Distributed Cognition, the particular focus of this study has been placed on the “public space of interaction” (Alac and Hutchins 2004, p. 639) that includes both participants’ interaction with each other and their interaction with artefacts in their environment. In this paper, a lesson from an Australian science classroom was examined in detail, in which a class of grade-seven students were investigating the scientific theme of gravity by designing pendulums. The video-stimulated post-lesson interviews with both the teacher and the student groups offered complementary accounts (Clarke 2001a) that assisted the interpretation of the classroom data. The findings of this study provide supporting evidence to demonstrate the capacity of Distributed Cognition for advancing our understanding of the nature of learning in science classrooms.  相似文献   

18.
We explored Grade 6 students’ (n = 202) self-efficacy, epistemic beliefs, and science interest over a 10-day virtual ecology curriculum. Pre- and post-surveys were administered, and analyses revealed that (1) students became more self-efficacious about inquiring scientifically after participating in the activity; (2) students on average evinced a shift toward more constructivist views about the role of authority in justifying scientific claims; (3) students who identified more strongly with being a science person evinced greater gains in self-efficacy, developed a less constructivist view about the role of authority in justifying claims, and became more interested in science overall; and (4) students who held an incremental theory of ability evinced greater gains in self-efficacy. We discuss the implications of these findings for science educators and instructional designers in the design and use of immersive virtual worlds for middle school science students.  相似文献   

19.
Current models of self-regulated learning emphasize the pervasive need for metacognitive monitoring skills at all phases of the learning process (Winne and Hadwin in Studying as self-regulated learning. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Metacognition in educational theory and practice (pp. 227–304). Mahwah, NJ: Erlbaum, 1998). In this investigation, we examined the impact of teaching 5th grade students how to self-monitor their comprehension and make confidence judgments. One treatment class (N = 21) engaged in process-oriented comprehension monitoring training while the other (N = 24) engaged in both comprehension monitoring training and response-oriented monitoring accuracy training. Findings revealed that students in both treatment classes improved their calibration accuracy and showed higher confidence on test performance than students in two comparison classes (N = 47, N = 26) after 2 weeks of instruction. However, students in the monitoring accuracy training class also showed significant gains in overconfidence in comparison to those in the other three classes. Implications for integrating comprehension-monitoring training at the elementary school level are discussed.
Jessica D. HuffEmail:
  相似文献   

20.
The construct of identity has been used widely in mathematics education in order to understand how students (and teachers) relate to and engage with the subject (Kaasila, 2007; Sfard & Prusak, 2005; Boaler, 2002). Drawing on cultural historical activity theory (CHAT), this paper adopts Leont’ev’s notion of leading activity in order to explore the key ‘significant’ activities that are implicated in the development of students’ reflexive understanding of self and how this may offer differing relations with mathematics. According to Leont’ev (1981), leading activities are those which are significant to the development of the individual’s psyche through the emergence of new motives for engagement. We suggest that alongside new motives for engagement comes a new understanding of self—a leading identity—which reflects a hierarchy of our motives. Narrative analysis of interviews with two students (aged 16–17 years old) in post-compulsory education, Mary and Lee, are presented. Mary holds a stable ‘vocational’ leading identity throughout her narrative and, thus, her motive for studying mathematics is defined by its ‘use value’ in terms of pursuing this vocation. In contrast, Lee develops a leading identity which is focused on the activity of studying and becoming a university student. As such, his motive for study is framed in terms of the exchange value of the qualifications he hopes to obtain. We argue that this empirical grounding of leading activity and leading identity offers new insights into students’ identity development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号