首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>命题若x,y∈R,则可设x=a+b,y=a-b;特别地,若x+y=2a,则可设x=a+t,y=a-t(t∈R),这种变换称为和差换元法。下面通过几个例子来讲解这种巧解方法。  相似文献   

2.
若x、y∈R,则可设x=a b,y=a-b:特别地,若x y=2a,则可设x=a t,y=a-t(t∈R).这种变换我们称为和差换元法.运用这种换元法解题.构思别致,解题过程简捷巧妙.现举例说明如下.  相似文献   

3.
一、概念不清造成的错解1.集合A={x∈R|y=2x2+1},B={y∈R|y=2x2+1},则A与B的关系是.错解:∵x∈R,y∈R,y=2x2+1,∴A=B剖析:∵A中的元素是x∈R,即A=R,B的元素是y,又y=x2+1≥1,B={y|y≥1},故正确答案是B真包含于A·二、忽视讨论造成的错解2.若集合A={x∈R|ax2+2x+1=0,a∈R}是单元素集,则a=.错解:依题意,二次方程ax2+2x+1=0有二等实根,∴Δ=4-4a=0,即a=1·剖析:∵a∈R,∴应分a=0和a≠0两种情况讨论,当a=0时,x=-21,合题意,当a≠0时,Δ=0,得a=1,∴正确答案是a=0或1.3.集合A={x|x2-3x+2=0},B={x|ax-2=0}若B真包含于A,求实数a组成的集合…  相似文献   

4.
用三角换元法证明不等式是基本方法,根据题意恰当地进行换元,则可使问题快速获解,达到事半功倍的效果.例1设点P(x,y)是圆x~2+(y-1)~2= 1上任意一点,若总有x+y+c≥0,试求c的取值范围.解因为点P(x,y)在圆x~2+(y-1)~2= 1上,故可设x=cosθ,y=1+sinθ,则x+y+c=cosθ+sinθ+1+c≥0恒成立,  相似文献   

5.
一、选择题 (本大题共 12小题 ,每小题 5分 ,共60分 ,每小题 4个选项中 ,只有一项正确 )1.给出下列 4个命题 :①若a、b∈R ,则a+b2≥ab ,②若a、b∈R ,则|a +b|≤|a|+|b| ;③若x∈R ,则x2 + 1>x ;④若x∈R且x≠ 0 ,则x+ 1x ≥ 2 .其中真命题的序号为 (   )   (A)①②   (B)②③   (C)③④   (D)①②③2 .如果直线 y =ax + 2与直线 y=3x -b关于直线 y=x对称 ,那么a ,b的值分别为(   )   (A)a =13 ,b =6   (B)a=-13 ,b=6   (C)a=3 ,b =-2   (D)a =3 ,b=63 .已知a>0 ,-1a>ab…  相似文献   

6.
当题目中出现x y=2k的条件时,可设x=k t,y=k-t(k、t均为实数)来解题,这种方法称为均值换元法,巧用均值换元法解题,往往能使问题由难变易,现举例说明如下:  相似文献   

7.
求无理函数的最值问题 ,若用常规方法求解 ,对于有些题目来说就显得较为繁杂 ,计算量也较大 ,但若根据问题的特点巧妙地用三角代换来求解 ,则可把求无理函数的最值问题转化为求三角函数的最值问题 ,使问题得以简化 ,达到事半功倍的效果 .下面就介绍几类可用三角代换法来求无理函数最值的题型 ,仅供参考 .一、当函数的定义域为x∈ [0 ,a] (a >0 )时 ,可设x =asin2 θ ,θ∈ [0 ,π2 ]【例 1】 求函数y =1-x +x的最大值和最小值 .解 :∵函数的定义域为x∈ [0 ,1] ,∴可设x =sin2 θ ,θ∈ [0 ,π2 ]则原函数可化为y=sinθ +cosθ=2sin(θ+ π…  相似文献   

8.
一堂“基本不等式”的习题课上 ,老师提出这样一个问题 1:“若 x,y∈ R+,且 x + y =1,则 1x + 1y的最小值是 4,若 x,y∈ R+,且 1x + 1y =1,则 x+ y的最小值也是 4.那么若 x,y∈ R+,且 x +y = 1,则 1x + 4y 的最小值是不是与若 x,y∈R+,且 1x + 4y =1,则 x + y的最小值相同 ?为什么 ?”有的学生很快有了答案 ,有的学生怎么也做不出结果来 .老师问那些做出结果的同学 ,答案相同吗 ?学生 [1]说 :相同 .老师又问 :你是怎样求的 ?学生 [1]说 :因为 x,y∈ R+,且 x + y =1,所以 1x+ 4y=(1x+ 4y) (x + y) =5 + yx+4xy ≥ 5 + 2 yx .4xy =9(等号成…  相似文献   

9.
在一些解方程的问题中,如果已知(或通过变形可得到)x+y=2a,则可将其中的x和y分别用a+t和a-t来代换,求出t值后,再确定x、y值,我们把这种解题方法,称之为“平均值换元法”.下面以课本题目为例说明这个方法及其作用. 一、解一元二次方程  相似文献   

10.
在解含有绝对值的不等式时,通常我们去掉绝对值再求解,但在有一些问题中,添加绝对值也会取得求解的途径。下面给出两个例题加以说明。例1 求函数y=sinx+Z/sinx的值域。分析:在定义域x≠kπ(k∈Z)内,用“均值不等式”或用“函数的有界性”求此函数y的值域,均难奏效;若用“换元法”令t=sinx,则y=f(x)=t+Z/t,t∈E[-1,0)∪(0,1],转化由函数y=f(t)的单调性求值域,计算过程冗长;但由y=(sin~2x+2)/sinx两边添上绝对值,则可用“均值不等式”简明解出。解:由y=(sin~2x+2)/sinx得  相似文献   

11.
笔者最近在帮助高三同学数学答疑过程中,遇见下面一道数学求最值问题: 已知x,y∈R,x2+y2-3xy=2,求x2+y2的最值. 解法一利用换元法结合基本不等式求解  相似文献   

12.
换元法是解题的一种重要方法,平均值换元法又是一种特殊的、巧妙的方法。有些类似问题若能灵活地利用这种方法,则步骤极为简捷。举例如下:一、在解方程方面例1 在实数范围内,解方程(x+1)~4+(x+3)~4=272。分析若直接把左边括号展开,此方程可整理为 x 的四次方程,不好解。若考虑到x+1与 x+3的平均值为 x+2,令 y=x+2,则 x+1=y-1,x+3=y+1,这时原方程化为(y-1)~4+(y+1)~4=272,展开后求解,较为简便。  相似文献   

13.
一、选择题1.若集合M=y|y=2~(-x)},P={y|y=(x-1)/2},则M∩P=A.{y|y>1}B.{y|y≥1}C.{y|y>0}D.{y|y≥0}2.已知集合I,P,Q满足I=P∪Q={0,1,2,3,4},P∩Q={1,3},则(P∪Q)∩(P∪Q)=A.{0,1,3}B.{1,2,4}C.{0,2,4}D.{1,3,4}3.集合M={x|x=kπ/2+π4,k∈R},N={x|x=kπ4+π2,k∈R},则A.M=N B.M劢N C.M奂N D.M∩N=覫4.设全集I={(x,y)|x,y∈R},集合M={(x,y)|y-3x-2=1},N={(x,y)|y≠x+1},那么M∪N=A.覫B.{(2,3)}C.(2,3)D.{(x,y)|y=x+1}5.已知集合M={a2,a+1,-3},N={a-3,2a-1,a2+1…  相似文献   

14.
一、忽略区间端点致误例1已知关于x的不等式ax-5x2-a<0的解集为M,若3∈M且5M,求实数a的取值范围.错解由3∈M且5M得3a-59-a<0,且5a-525-a≥0.这等价于不等式组(a-53)(a-9)>0,(a-1)(a-25)≤0且a≠25 解得a∈犤1,53)∪(9,25).剖析因为当a=25时,x=5恰好不是25x-5x2-25<0的解,即5M,此时却仍有3∈M.所以要找回a=25这个特殊的区间端点值,故a∈犤1,53)∪(9,25犦为所求.二、忽略观察图象致误例2已知logax+3logxa-logxy=3,设x=at(a>1),试用a、t表示y,并求a=16时y的取值范围.错解∵x>0且x≠1,由x=at(a>1)得t=logax(t∈R且t≠0).由换底公式得logax…  相似文献   

15.
在x1+x2+…+xn=m中,令x1=mn+t1,x2=mn+t2,…,xn=mn+tn,其中t1+t2+…+tn=0,这就是均值换元法.如在x+y=a中,可令x=a2+t,y=2a-t.一、用均值换元法化简计算例1求值:√987×989×991×993+(993-989)(991-987).解令a=987+989+4991+993=990,∴原式可化为√(a-3)(a-1)(a+1)(a+3)+4×4=√(a2-1)(a2-9)+16.令b=(a2-1)+(a2-9)2=a2-5,∴√(a2-1)(a2-9)+16=√(b+4)(b-4)+16=b=a2-5=9902-5=980095.二、用均值换元法证明不等式例2已知a+b+c=3,求证:a2+b2+c2≥3.证明令a=1+t1,b=1+t2,c=1+t3,其中t1+t2+t3=0.∴a2+b2+c2=(1+t1)2+(1+t2)2+(1+t3)2=3+2(t1+t2+t3…  相似文献   

16.
若实数m、n满足m+n=p,则可设m=p/2+t,n=p/2-t.我们称这种换元方法为“均值”换元法.  相似文献   

17.
一、构造方程例1已知a,b缀R,且a3+b3=2,求a+b的最大值.解设a+b=t,则a3+b3=(a+b)(a2-ab+b2)=t(t2-3ab)=2,即ab=t3-23t,所以a,b是方程x2-tx+t3-23t=0的两实根.故驻=t2-4×t3-23t≥0.解得0相似文献   

18.
一、换元的思想方法 换元法的基本思路是通过设辅助未知数,使复杂的问题转化为简单的、已知的问题.如解可化为一元二次方程的分式方程. 例1 用换元法解方程(x+2/x)2-(x+2/x)=1,设y=x+2/x,则原方程可化为(). A.y2-y-1 =0 B.y2 +y+1 =0 C.y2 +y-1 =0 D.y2-y+1 =0 分析:若把原方程展开再解,项数增加、次数增高,解答起来会很复杂,设y=x+2/x,通过换元将原方程化为整式方程y2-y-1=0再解,方便多了.故选A.  相似文献   

19.
对于任意两个实数x和y,总有x=(x+y)/2+(x-y)/2,y=(x+y)/2-(x-y)/2,若令(x+y)/2=a,(x-y)/2=b,则有x=a+b,这种代换就叫做和差代换.和差代换很有 y=a-b,用,这里介绍它在二次根式问题方面的应用.  相似文献   

20.
例1求y=cosx+!3sinx,x∈π#6,23π$的值域.思路:形如y=asinx+bcosx的函数通常转化成y=!a2+b2sin(x+θ)的形式.解:y=cosx+!3sinx=2sin(x+π6).由x∈%π6,23π&,得x+π6∈%π3,56π&.∴21≤sin(x+π6)≤1,故1≤y≤2.即原函数的值域为[1,2].例2求y=sin2x-sinx+1,x∈π%3,34π&的值域.思路:形如y=asin2x+bsinx+c(a≠0)的函数,可利用换元法转化为在[-1,1]内的二次函数问题.即求y=at2+bt+c的值域.解:y=sin2x-sinx+1=(sinx-12)2+43.又x∈%π3,34π$,∴sinx∈!22,%$1.而(sinx-21)2+43在!22,%$1上单调递增,∴y∈3-!22,%$1.即所求值域为3-!22,%$1.例3…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号