首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BackgroundXylitol is a five carbons polyol with promising medical applications. It can be obtained from chemical d-xylose reduction or by microbial fermentation of Sugarcane Bagasse Hemicellulosic Hydrolysate. For this last process, some microbial inhibitors, as furfural, constitute severe bottleneck. In this case, the use of strains able to produce xylitol simultaneously to furfural neutralization is an interesting alternative. A wild-type strain of Geotrichum sp. was detected with this ability, and its performance in xylitol production and furfural consumption was evaluated. Furthermore, were analyzed its degradation products.ResultsGeotrichum sp. produced xylitol from d-xylose fermentation with a yield of 0.44 g·g-1. Furfural was fully consumed in fermentation assay and when provided in the medium until concentration of 6 g·L-1. The furfural degradation product is not an identified molecule, presenting a molecular weight of 161 g·mol-1, an uncommon feature for the microbial metabolism of this product.ConclusionThis strain presents most remarkable potential in performing furfural consumption simultaneous to xylitol production. Subsequent efforts must be employed to establish bioprocess to simultaneous detoxification and xylitol production by Geotrichum sp.  相似文献   

2.
BackgroundThe yield of almonds [Prunus dulcis (Mill.) D.A. Webb] could be low due to climatic problems and any factor improving kernel size and weight, such as the use of plant bioregulators (PBRs), should be beneficial.ResultsThree plant bioregulators: 24-epibrassinolide (BL), gibberellic acid (GA3) and kinetin (KN) were applied at three spray concentrations to Non Pareil and Carmel cultivars, at two phenological stages during bloom, in the 2014 and 2015 seasons. The results showed significant differences (P < 0.0001). For total dry weight of Non Pareil, the best treatment was BL (30 mg·L-1), with an average of 1.45 g, while the control was 1.30 g, at pink button during 2015. For Carmel, the best dry weight was 1.23 g, achieved with BL (30 mg·L-1) at fallen petals in both seasons. The average dry weight of the controls varied between 1.13 and 1.18 g. The greatest almond lengths and widths in Non Pareil were 24.98 mm and 15.05 mm, achieved with BL (30 mg·L-1) and KN (50 μL·L-1) treatments, respectively, applied at pink button in 2015. In Carmel, the greatest length and width were 24.38 and 13.44 mm, obtained with BL (30 mg·L-1) applied at the stages of pink button and fallen petals, respectively, in 2015. The control reached lengths between 22.33 and 23.38 mm, and widths between 11.99 and 12.93 mm.ConclusionsThe use of the bioregulators showed significant favorable effects on dry weight, length and width of kernels at harvest, in both cultivars.  相似文献   

3.
BackgroundGABA (γ-aminobutyric acid) is a four-carbon nonprotein amino acid that has hypotensive, diuretic, and tranquilizing properties. Glutamate decarboxylase (GAD) is the key enzyme to generate GABA. A simple and economical method of preparing and immobilizing GAD would be helpful for GABA production. In this study, the GAD from Lactobacillus fermentum YS2 was expressed under the control of a stress-inducible promoter and was purified and immobilized in a fusion form, and its reusability was investigated.ResultsThe fusion protein CBM-GAD was expressed in Escherichia coli DH5α carrying pCROCB-gadB, which contained promoter PrpoS, cbm3 (family 3 carbohydrate-binding module from Clostridium thermocellum) coding sequence, the gadB gene from L. fermentum YS2 coding for GAD, and the T7 terminator. After a one-step purification of CBM-GAD using regenerated amorphous cellulose (RAC) as an adsorbent, SDS-PAGE analysis revealed a clear band of 71 kDa; the specific activity of the purified fusion protein CBM-GAD reached 83.6 ± 0.7 U·mg-1. After adsorption onto RAC, the immobilized GAD with CBM3 tag was repeatedly used for GABA synthesis. The protein-binding capacity of RAC was 174 ± 8 mg·g-1. The immobilized CBM-GAD could repeatedly catalyze GABA synthesis, and 8% of the initial activities was retained after 10 uses. We tested the conversion of monosodium glutamate to GABA by the immobilized enzyme; the yield reached 5.15 g/L and the productivity reached 3.09 g/L·h.ConclusionsRAC could be used as an adsorbent in one-step purification and immobilization of CBM-GAD, and the immobilized enzyme could be repeatedly used to catalyze the conversion of glutamate to GABA.  相似文献   

4.
BackgroundThe effect of diverse oxygen transfer coefficient on the l-erythrulose production from meso-erythritol by a newly isolated strain, Gluconobacter kondonii CGMCC8391 was investigated. In order to elucidate the effects of volumetric mass transfer coefficient (kLa) on the fermentations, baffled and unbaffled flask cultures, and fed-batch cultures were developed in present work.ResultsWith the increase of the kLa value in the fed-batch culture, l-erythrulose concentration, productivity and yield were significantly improved, while cell growth was not the best in the high kLa. Thus, a two-stage oxygen supply control strategy was proposed, aimed at achieving high concentration and high productivity of l-erythrulose. During the first 12 h, kLa was controlled at 40.28 h-1 to obtain high value for cell growth, subsequently kLa was controlled at 86.31 h-1 to allow for high l-erythrulose accumulation.ConclusionsUnder optimal conditions, the l-erythrulose concentration, productivity, yield and DCW reached 207.9 ± 7.78 g/L, 6.50 g/L/h, 0.94 g/g, 2.68 ± 0.17 g/L, respectively. At the end of fermentation, the l-erythrulose concentration and productivity were higher than those in the previous similar reports.  相似文献   

5.
BackgroundThe development of a potential single culture that can co-produce hydrogen and ethanol is beneficial for industrial application. Strain improvement via molecular approach was proposed on hydrogen and ethanol co-producing bacterium, Escherichia coli SS1. Thus, the effect of additional copy of native hydrogenase gene hybC on hydrogen and ethanol co-production by E. coli SS1 was investigated.ResultsBoth E. coli SS1 and the recombinant hybC were subjected to fermentation using 10 g/L of glycerol at initial pH 7.5. Recombinant hybC had about 2-fold higher cell growth, 5.2-fold higher glycerol consumption rate and 3-fold higher ethanol productivity in comparison to wild-type SS1. Nevertheless, wild-type SS1 reported hydrogen yield of 0.57 mol/mol glycerol and ethanol yield of 0.88 mol/mol glycerol, which were 4- and 1.4-fold higher in comparison to recombinant hybC. Glucose fermentation was also conducted for comparison study. The performance of wild-type SS1 and recombinant hybC showed relatively similar results during glucose fermentation. Additional copy of hybC gene could manipulate the glycerol metabolic pathway of E. coli SS1 under slightly alkaline condition.ConclusionsHybC could improve glycerol consumption rate and ethanol productivity of E. coli despite lower hydrogen and ethanol yields. Higher glycerol consumption rate of recombinant hybC could be an advantage for bioconversion of glycerol into biofuels. This study could serve as a useful guidance for dissecting the role of hydrogenase in glycerol metabolism and future development of effective strain for biofuels production.  相似文献   

6.
BackgroundAn effective single culture with high glycerol consumption and hydrogen and ethanol coproduction yield is still in demand. A locally isolated glycerol-consuming Escherichia coli SS1 was found to produce lower hydrogen levels under optimized ethanol production conditions. Molecular approach was proposed to improve the hydrogen yield of E. coli SS1 while maintaining the ethanol yield, particularly in acidic conditions. Therefore, the effect of an additional copy of the native hydrogenase gene hycE and recombinant clostridial hydrogenase gene hydA on hydrogen production by E. coli SS1 at low pH was investigated.ResultsRecombinant E. coli with an additional copy of hycE or clostridial hydA was used for fermentation using 10 g/L (108.7 mmol/L) of glycerol with an initial pH of 5.8. The recombinant E. coli with hycE and recombinant E. coli with hydA showed 41% and 20% higher hydrogen yield than wild-type SS1 (0.46 ± 0.01 mol/mol glycerol), respectively. The ethanol yield of recombinant E. coli with hycE (0.50 ± 0.02 mol/mol glycerol) was approximately 30% lower than that of wild-type SS1, whereas the ethanol yield of recombinant E. coli with hydA (0.68 ± 0.09 mol/mol glycerol) was comparable to that of wild-type SS1.ConclusionsInsertion of either hycE or hydA can improve the hydrogen yield with an initial pH of 5.8. The recombinant E. coli with hydA could retain ethanol yield despite high hydrogen production, suggesting that clostridial hydA has an advantage over the hycE gene in hydrogen and ethanol coproduction under acidic conditions. This study could serve as a useful guidance for the future development of an effective strain coproducing hydrogen and ethanol.  相似文献   

7.
BackgroundPoly(dl-lactic acid), or PDLLA, is a biodegradable polymer that can be hydrolyzed by various types of enzymes. The protease produced by Actinomadura keratinilytica strain T16-1 was previously reported to have PDLLA depolymerase activity. However, few studies have reported on PDLLA-degrading enzyme production by bacteria. Therefore, the aims of this study were to determine a suitable immobilization material for PDLLA-degrading enzyme production and optimize PDLLA-degrading enzyme production by using immobilized A. keratinilytica strain T16-1 under various fermentation process conditions in a stirrer fermenter.ResultsAmong the tested immobilization materials, a scrub pad was the best immobilizer, giving an enzyme activity of 30.03 U/mL in a shake-flask scale. The maximum enzyme activity was obtained at aeration 0.25 vvm, agitation 170 rpm, 45°C, and 48 h of cultivation time. Under these conditions, a PDLLA-degrading enzyme production of 766.33 U/mL with 15.97 U/mL·h productivity was observed using batch fermentation in a 5-L stirrer fermenter. Increased enzyme activity and productivity were observed in repeated-batch (942.67 U/mL and 19.64 U/mL·h) and continuous fermentation (796.43 U/mL and 16.58 U/mL·h) at a dilution rate of 0.013/h. Scaled-up production of the enzyme in a 10-L stirrer bioreactor using the optimized conditions showed a maximum enzyme activity of 578.67 U/mL and a productivity of 12.06 U/mL·h.ConclusionsThis research successfully scaled-up the enzyme production to 5 and 10 L in a stirrer fermenter and is helpful for many applications of poly(lactic acid).  相似文献   

8.
BackgroundThe production of biofuels from renewable energy sources is one of the most important issues in industrial biotechnology today. The process is known to generate various by-products, for example crude glycerol, which is obtained in the making of biodiesel from rapeseed oil. Crude glycerol may be utilized in many ways, including microbial conversion to 1,3-propanediol (1,3-PD), a raw material for the synthesis of polyesters and polyurethanes.ResultsThe paper presents results of a study on the synthesis of 1,3-propanediol from crude glycerol by a repeated batch method with the use of Clostridium butyricum DSP1. Three cycles of fermentation medium replacement were carried out. The final concentration of 1,3-PD was 62 g/L and the maximum productivity, obtained during the second cycle, reached 1.68 g/L/h. Additionally, experiments conducted in parallel to the above involved using the entire quantity of the culture broth removed from the bioreactor to inoculate successive portions of fermentation media containing crude glycerol at concentrations of 80 g/L and 100 g/L. Under those conditions, the maximum 1,3-PD concentrations were 43.2 g/L and 54.2 g/L.ConclusionsThe experiments proved that by using a portion of metabolically active biomass as inoculum for another fermentation formula it is possible to eliminate the stage of inoculum growth and thereby reduce the length of the whole operation. Additionally, that strategy avoids the phase of microbial adaptation to a different source of carbon such as crude glycerol, which is more difficult to utilize, thus improving the kinetic parameters of 1,3-PD production.  相似文献   

9.
Background1,3-Propanodiol (1,3-PD), is used in the production of polytrimethylene terephthalate (PTT), an aromatic polyester that exhibits high elastic recoveries. It is also employed as a supplement with low solidification properties, a solvent and a lubricant in the formof propylene glycol. 1,3-PD is effectively synthesized by a microbiological way from crude glycerol. The main problem of this technology is using a high concentration of glycerol, which is a limiting factor for bacteria cells growth (especially in batch fermentation).ResultsIn this work, the influence of different glycerol concentration in batch fermentation on Clostridium butyricum DSP1 metabolism was investigated. The biomass was concentrated for two times with the use of membrane module (in case of increasing kinetic parameters). Increased optical density of bacteria cells six times increased the productivity of 1,3-PD in cultivation with 20 g/L of glycerol at the beginning of the process, and more than two times in cultivation with 60–80 g/L. Also the possibility of complete attenuation of 140 g/L of crude glycerol in the batch fermentation was investigated. During the cultivation, changes of protein profiles were analyzed. The most significant changes were observed in the cultivation in the medium supplemented with 80 g/L of glycerol. They related mainly to the DNA protein reconstructive systems, protective proteins (HSP), and also the enzymatic catalysts connected with glycerol metabolic pathway.ConclusionsThe application of filtration module in batch fermentation of crude glycerol by C. butyricum DSP1 significantly increased the productivity of the process.  相似文献   

10.
BackgroundThe selection of new yeast strains could lead to improvements in bioethanol production. Here, we have studied the fermentative capacity of different auxotrophic mutants of Saccharomyces cerevisiae, which are routinely used as hosts for the production of heterologous proteins. It has recently been found that these strains exhibit physiological alterations and peculiar sensitivities with respect to the parental prototrophic strains from which they derive. In this work the performance of auxotrophic S. cerevisiae CEN.PK strains was compared to the corresponding prototrophic strain, to S. cerevisiae T5bV, a strain isolated from grape must and to another auxotrophic strain, S. cerevisiae BY4741.ResultsThe results indicate that the fermentative capacity of strains grown in 2% glucose was similar in all the strains tested. However, in 15% initial glucose, the auxotrophic strains exhibited a more than doubled ethanol yield on biomass (10 g g- 1dw) compared to the prototrophic strains (less than 5 g g- 1dw). Other tests have also evidenced that in medium depletion conditions, ethanol production continues after growth arrest.ConclusionsThe results highlight the capacity of auxotrophic yeast strains to produce ethanol per mass unit, in a higher amount with respect to the prototrophic ones. This leads to potential applications for auxotrophic strains of S. cerevisiae in the production of ethanol in both homogeneous and heterogeneous phases (immobilized systems). The higher ethanol yield on biomass would be advantageous in immobilized cell systems, as a reduced yeast biomass could greatly reduce the mass transfer limitations through the immobilization matrix.  相似文献   

11.
BackgroundTreating latex rubber sheet wastewater often leads to the generation of a rotten-egg odor from toxic H2S. To increase the treatment efficiency and eliminate H2S, purple nonsulfur bacteria (PNSB), prepared by supplementing non-sterile rubber sheet wastewater (RAW) with fermented pineapple extract (FPE), were used to treat this wastewater under microaerobic light conditions. The following 3 independent variables: chemical oxygen demand (COD), initial pH and FPE dose were investigated using the Box–Behnken design to find optimal conditions for stimulating the growth of indigenous PNSB (PNSBsi).ResultsThe addition of 2.0% FPE into RAW, which had a COD of 2000 mg L- 1 and an initial pH of 7.0, significantly decreased oxidation reduction potential (ORP) value and stimulated PNSBsi to reach a maximum of 7.8 log cfu mL- 1 within 2 d. Consequently, these PNSBsi, used as inoculants, were investigated for their ability to treat the wastewater under microaerobic light conditions. A central composite design was used to determine the optimal conditions for the wastewater treatment. These proved to be 7% PNSBsi, 0.8% FPE and 4 d retention time and this combination resulted in a reduction of 91% for COD, 75% for suspended solids, 61% for total sulfide while H2S was not detected. Results of abiotic control and treatment sets indicated that H2S was produced by heterotrophic bacteria and it was then effectively deactivated by PNSBsi.ConclusionsThe stimulation of PNSB growth by FPE under light condition was to lower ORP, and PNSBsi proved to be effective for treating the wastewater.  相似文献   

12.
BackgroundA simple, rapid, low-cost and environmentally friendly method was developed to determine dopamine (DA) in the presence of ascorbic (AA) and uric acid (UA) based on a novel technique to prepare a graphene–chitosan (GR–CS) nanocomposite and modify it on the surface of carbon paste electrode (CPE). For our design, CS acts as a media to disperse and stabilize GR, and then GR plays a key role to selective and sensitive determination of DA.ResultsUnder physiological conditions, the linear range for dopamine was determined from 1 × 10- 4 to 2 × 10- 7 mol/L with a good correlation coefficient of 0.9961 in the presence of 1000-fold interference of AA and UA. The detection limit was estimated to be 9.82 × 10- 8 mol/L (S/N = 3). In order to study the stability and reproducibility, GR/CS/CPE underwent successive measurements in 10 times and then tested once a d for 30 d. The result exhibited 98.25% and 91.62% activities compared with the original peak current after 10-time measurements and 30-d storage.ConclusionThe GR/CS/CPE has wide linear concentration range, low detection limit, and good reproducibility and stability, which suggests that our investigations provide a promising alternative for clinic DA determination.  相似文献   

13.
BackgroundThe paper reports on the utilization of palm kernel oil (PKO) as a low cost renewable substrate for medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA) production by Pseudomonas putida BET001. Investigation on the effects of selected key variables on growth, mixed free fatty acids consumption and mcl-PHA production by the bacterial culture in the shaken flask system were carried out along with its kinetic modeling.ResultsThe biomass production, fatty acids consumption and mcl-PHA production were found favorable when the strain was cultured in mineral medium at pH 6–7, 28°C, aeration surface-to-volume ratio of 0.4 × 106 m- 1, 250 rpm agitation rate for 48 h. Mcl-PHA production by this strain showed mixed growth and non-growth associated components as described by Luedeking–Piret kinetic model.ConclusionThe findings of this study provided add to the literature on key variables in for achieving good microbial growth and mcl-PHA production in shake flasks culture. In addition, suitable kinetic model to describe cultivation in this system was also presented.  相似文献   

14.
BackgroundLipases are used in detergent industries to minimise the use of phosphate-based chemicals in detergent formulations. The use of lipase in household laundry reduces environmental pollution and enhances the ability of detergent to remove tough oil or grease stains.ResultsA lipase-producing indigenous Bacillus subtilis strain [accession no. KT985358] was isolated from the foothills of Trikuta mountain in Jammu and Kashmir, India. The lipase (BSK-L) produced by this strain expressed alkali and thermotolerance. Lipase has an optimal activity at pH 8.0 and temperature 37°C, whereas it is stable at pH 6.0–9.0 and showed active lipolytic activity at temperatures 30 to 60°C. Furthermore, lipase activity was found to be stimulated in the presence of the metal ions Mn2 +, K+, Zn2 +, Fe2 + and Ca2 +. This lipase was resistant to surfactants, oxidising agents and commercial detergents, suggesting it as a potential candidate for detergent formulation. BSK-L displayed noticeable capability to remove oil stains when used in different washing solutions containing buffer, lipase and commercial detergent. The maximum olive oil removal percentage obtained was 68% when the optimum detergent concentration (Fena) was 0.3%. The oil removal percentage from olive oil-soiled cotton fabric increased with 40 U/mL of lipase.ConclusionsThis BSK-L enzyme has the potential for removing oil stains by developing a pre-soaked solution for detergent formulation and was compatible with surfactants, oxidising agents and commercial detergents.  相似文献   

15.
BackgroundSulphur-oxidizing microorganisms are widely used in the biofiltration of total reduced sulphur compounds (odorous and neurotoxic) produced by industries such as the cellulose and petrochemical industries, which include high-temperature process steps. Some hyperthermophilic microorganisms have the capability to oxidize these compounds at high temperatures (> 60°C), and archaea of this group, for example, Sulfolobus metallicus, are commonly used in biofiltration technology.ResultsIn this study, a hyperthermophilic sulphur-oxidizing strain of archaea was isolated from a hot spring (Chillán, Chile) and designated as M1. It was identified as archaea of the genus Sulfolobus (99% homology with S. solfataricus 16S rDNA). Biofilms of this culture grown on polyethylene rings showed an elemental sulphur oxidation rate of 95.15 ± 15.39 mg S l-1 d-1, higher than the rate exhibited by the biofilm of the sulphur-oxidizing archaea S. metallicus (56.8 ± 10.91 mg l-1 d-1).ConclusionsThe results suggest that the culture M1 is useful for the biofiltration of total reduced sulphur gases at high temperatures and for other biotechnological applications.  相似文献   

16.
BackgroundAspartic proteases are a subfamily of endopeptidases that are useful in a variety of applications, especially in the food processing industry. Here we describe a novel aspartic protease that was purified from Peptidase R, a commercial protease preparation derived from Rhizopus oryzae.ResultsAn aspartic protease sourced from Peptidase R was purified to homogeneity by anion exchange chromatography followed by polishing with a hydrophobic interaction chromatography column, resulting in a 3.4-fold increase in specific activity (57.5 × 103 U/mg) and 58.8% recovery. The estimated molecular weight of the purified enzyme was 39 kDa. The N-terminal sequence of the purified protein exhibited 63–75% identity to rhizopuspepsins from various Rhizopus species. The enzyme exhibited maximal activity at 75°C in glycine–HCl buffer, pH 3.4 with casein as the substrate. The protease was stable at 35°C for 60 min and had an observed half-life of approximately 30 min at 45°C. Enzyme activity was not significantly inhibited by chelation with ethylenediamine tetraacetic acid (EDTA), and the addition of metal ions to EDTA-treated protease did not significantly change enzyme activity, indicating that proteolysis is not metal ion-dependent. The purified enzyme was completely inactivated by the aspartic protease inhibitor Pepstatin A.ConclusionBased on the observed enzyme activity, inhibition profile with Pepstatin A, and sequence similarity to other rhizopuspepsins, we have classified this enzyme as an aspartic protease.  相似文献   

17.
BackgroundA simple and efficient strategy for agarase immobilization was developed with carboxyl-functionalized magnetic nanoparticles (CMNPs) as support. The CMNPs and immobilized agarase (agarase-CMNPs) were characterized by transmission electron microscopy, dynamic light scattering, vibrating sample magnetometry, scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and zeta-potential analysis. The hydrolyzed products were separated and detected by ESI-TOF-MS.ResultsThe agarase-CMNPs exhibited a regular spherical shape with a mean diameter of 12 nm, whereas their average size in the aqueous solution was 43.7 nm as measured by dynamic light scattering. These results indicated that agarase-CMNPs had water swelling properties. Saturation magnetizations were 44 and 29 emu/g for the carriers and agarase-CMNPs, respectively. Thus, the particles had superparamagnetic characteristics, and agarase was successfully immobilized onto the supports. Agaro-oligosaccharides were prepared with agar as substrate using agarase-CMNPs as biocatalyst. The catalytic activity of agarase-CMNPs was unchanged after six reuses. The ESI-TOF mass spectrogram showed that the major products hydrolyzed by agarase-CMNPs after six recycle uses were neoagarotetraose, neoagarohexaose, and neoagarooctaose. Meanwhile, the end-products after 90 min of enzymatic treatment by agarase-CMNPs were neoagarobiose and neoagarotetraose.ConclusionsThe enhanced agarase properties upon immobilization suggested that CMNPs can be effective carriers for agarase immobilization. Agarase-CMNPs can be remarkably used in developing systems for repeated batch production of agar-derived oligosaccharides.  相似文献   

18.
BackgroundTraditional methods of obtaining arsenic have disadvantages such as high cost and high energy consumption. Realgar is one of the most abundant arsenic sulphide minerals and usually treated as waste in industry. The aim of the present study was to screen an arsenic tolerant bacterium used for bioleaching arsenic from realgar.ResultsAn acidophilic iron-oxidizing bacterium BYQ-12 was isolated from Wudalianchi volcanic lake in northeast China. BYQ-12 was a motile, rod-shaped gram-negative bacterium with an optimum growth at 30°C and pH 2.5. 16S rDNA phylogeny showed that BYQ-12 was a new strain of Acidithiobacillus ferrooxidans. The inhibitory concentrations (ICs) of arsenite and arsenate were 32 and 64 mM, respectively. A significant second-order model was established using a Box–Behnken design of response surface methodology (BBD-RSM) and it estimated that a maximum arsenic bioleaching rate (73.97%) could be obtained when the pulp concentration, pH and initial ferrous ion concentration were set at optimized values of 0.95% w/v, 1.74 and 3.68 g/L, respectively. SEM, EDS and XRD analyses also revealed that there was direct bioleaching besides indirect electrochemical leaching in the arsenic bioleaching system.ConclusionFrom this work we were successful in isolating an acidophilic, arsenic tolerant ferrous iron-oxidizing bacterium. The BBD-RSM analysis showed that maximum arsenic bioleaching rate obtained under optimum conditions, and the most effective factor for arsenic leaching was initial ferrous ion concentration. These revealed that BYQ-12 could be used for bioleaching of arsenic from arsenical minerals.  相似文献   

19.
BackgroundFermentation process development has been very important for efficient ethanol production. Improvement of ethanol production efficiency from sweet sorghum juice (SSJ) under normal gravity (NG, 160 g/L of sugar), high gravity (HG, 200 and 240 g/L of sugar) and very high gravity (VHG, 280 and 320 g/L of sugar) conditions by nutrient supplementation and alternative feeding regimes (batch and fed-batch systems) was investigated using a highly ethanol-tolerant strain, Saccharomyces cerevisiae NP01.ResultsIn the batch fermentations without yeast extract, HG fermentation at 200 g/L of sugar showed the highest ethanol concentration (PE, 90.0 g/L) and ethanol productivity (QE, 1.25 g/L·h). With yeast extract supplementation (9 g/L), the ethanol production efficiency increased at all sugar concentrations. The highest PE (112.5 g/L) and QE (1.56 g/L·h) were observed with the VHG fermentation at 280 g/L of sugar. In the fed-batch fermentations, two feeding regimes, i.e., stepwise and continuous feedings, were studied at sugar concentrations of 280 g/L. Continuous feeding gave better results with the highest PE and QE of 112.9 g/L and 2.35 g/L·h, respectively, at a feeding time of 9 h and feeding rate of 40 g sugar/h.ConclusionsIn the batch fermentation, nitrogen supplementation resulted in 4 to 32 g/L increases in ethanol production, depending on the initial sugar level in the SSJ. Under the VHG condition, with sufficient nitrogen, the fed-batch fermentation with continuous feeding resulted in a similar PE and increased QP by 51% compared to those in the batch fermentation.  相似文献   

20.
BackgroundIn biodegradation processes free enzymes often undergo deactivation. Thus, it is very important to obtain highly stable enzymes by different methods. Immobilization allows for successful stabilization of many multimeric enzymes by increasing the rigidity of the enzyme structure. This study aimed to evaluate some environmental factors that affect catechol 1,2-dioxygenase from Stenotrophomonas maltophilia KB2 immobilized in alginate hydrogel. The goal of the present work was to improve the functional stability of the enzyme by increasing its structural rigidity.ResultsImmobilization yield and expressed activity were 100% and 56%, respectively. Under the same storage conditions, the activity of the immobilized enzyme was still observed on the 28th d of incubation at 4°C, whereas the free enzyme lost its activity after 14 d. The immobilized enzyme required approximately 10°C lower temperature for its optimal activity than the free enzyme. Immobilization shifted the optimal pH from 8 for the soluble enzyme to 7 for the immobilized enzyme. The immobilized catechol 1,2-dioxygenase showed activity against 3-methylcatechol, 4-methylcatechol, 3-chlorocatechol, 4-chlorocatechol, and 3,5-dichlorocatechol. The immobilization of the enzyme promoted its stabilization against any distorting agents: aliphatic alcohols, phenols, and chelators.ConclusionsThe entrapment of the catechol 1,2-dioxygenase from S. maltophilia KB2 has been shown to be an effective method for improving the functional properties of the enzyme. Increased resistance to inactivation by higher substrate concentration and other factors affecting enzyme activity as well as broadened substrate specificity compared to the soluble enzyme, makes the immobilized catechol 1,2-dioxygenase suitable for the bioremediation and detoxification of xenobiotic-contaminated environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号