首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the normal and parallel ground reaction forces during downhill and uphill running in habitual forefoot strike and habitual rearfoot strike (RFS) runners. Fifteen habitual forefoot strike and 15 habitual RFS recreational male runners ran at 3 m/s ± 5% during level, uphill and downhill overground running on a ramp mounted at 6° and 9°. Results showed that forefoot strike runners had no visible impact peak in all running conditions, while the impact peaks only decreased during the uphill conditions in RFS runners. Active peaks decreased during the downhill conditions in forefoot strike runners while active loading rates increased during downhill conditions in RFS runners. Compared to the level condition, parallel braking peaks were larger during downhill conditions and parallel propulsive peaks were larger during uphill conditions. Combined with previous biomechanics studies, our findings suggest that forefoot strike running may be an effective strategy to reduce impacts, especially during downhill running. These findings may have further implications towards injury management and prevention.  相似文献   

2.
This study assessed kinematic differences between different foot strike patterns and their relationship with peak vertical instantaneous loading rate (VILR) of the ground reaction force (GRF). Fifty-two runners ran at 3.2 m · s?1 while we recorded GRF and lower limb kinematics and determined foot strike pattern: Typical or Atypical rearfoot strike (RFS), midfoot strike (MFS) of forefoot strike (FFS). Typical RFS had longer contact times and a lower leg stiffness than Atypical RFS and MFS. Typical RFS showed a dorsiflexed ankle (7.2 ± 3.5°) and positive foot angle (20.4 ± 4.8°) at initial contact while MFS showed a plantar flexed ankle (?10.4 ± 6.3°) and more horizontal foot (1.6 ± 3.1°). Atypical RFS showed a plantar flexed ankle (?3.1 ± 4.4°) and a small foot angle (7.0 ± 5.1°) at initial contact and had the highest VILR. For the RFS (Typical and Atypical RFS), foot angle at initial contact showed the highest correlation with VILR (r = ?0.68). The observed higher VILR in Atypical RFS could be related to both ankle and foot kinematics and global running style that indicate a limited use of known kinematic impact absorbing “strategies” such as initial ankle dorsiflexion in MFS or initial ankle plantar flexion in Typical RFS.  相似文献   

3.
Compared to competitive runners, recreational runners appear to be more prone to injuries, which have been associated with foot strike patterns. Surprisingly, only few studies had examined the foot strike patterns outside laboratories. Therefore, this study compared the foot strike patterns in recreational runners at outdoor tracks with previously reported data. We also investigated the relationship between foot strike pattern, speed, and footwear in this cohort. Among 434 recreational runners analysed, 89.6% of them landed with rearfoot strike (RFS). Only 6.9 and 3.5% landed with midfoot and forefoot, respectively. A significant shift towards non-RFS was observed in our cohort, when compared with previously reported data. When speed increased by 1 m/s, the odds of having forefoot strike and midfoot strike relative to RFS increased by 2.3 times and 2.6 times, respectively. Runners were 9.2 times more likely to run with a forefoot strike in minimalists compared to regular running shoes, although 70% of runners in minimalists continued to use a RFS. These findings suggest that foot strike pattern may differ across running conditions and runners should consider these factors in order to mitigate potential injury.  相似文献   

4.
Abstract

Although the biomechanical properties of the various types of running foot strike (rearfoot, midfoot, and forefoot) have been studied extensively in the laboratory, only a few studies have attempted to quantify the frequency of running foot strike variants among runners in competitive road races. We classified the left and right foot strike patterns of 936 distance runners, most of whom would be considered of recreational or sub-elite ability, at the 10 km point of a half-marathon/marathon road race. We classified 88.9% of runners at the 10 km point as rearfoot strikers, 3.4% as midfoot strikers, 1.8% as forefoot strikers, and 5.9% of runners exhibited discrete foot strike asymmetry. Rearfoot striking was more common among our sample of mostly recreational distance runners than has been previously reported for samples of faster runners. We also compared foot strike patterns of 286 individual marathon runners between the 10 km and 32 km race locations and observed increased frequency of rearfoot striking at 32 km. A large percentage of runners switched from midfoot and forefoot foot strikes at 10 km to rearfoot strikes at 32 km. The frequency of discrete foot strike asymmetry declined from the 10 km to the 32 km location. Among marathon runners, we found no significant relationship between foot strike patterns and race times.  相似文献   

5.
The purpose of this study was to investigate the relationship between Achilles tendon properties and foot strike patterns in long-distance runners. Forty-one highly trained male long-distance runners participated in this study. Elongation of the Achilles tendon and aponeurosis of the medial gastrocnemius muscle were measured using ultrasonography, while the participants performed ramp isometric plantar flexion up to the voluntary maximum. The relationship between the estimated muscle force and tendon elongation during the ascending phase was fit to a linear regression, the slope of which was defined as stiffness. In addition, the cross-sectional area of the Achilles tendon was measured using ultrasonography. Foot strike patterns (forefoot, midfoot and rearfoot) during running were determined at submaximal velocity (18 km · h?1) on a treadmill. The number of each foot strike runner was 12 for the forefoot (29.3%), 12 for the midfoot (29.3%) and 17 for the rearfoot (41.5%). No significant differences were observed in the variables measured for the Achilles tendon among the three groups. These results suggested that the foot strike pattern during running did not affect the morphological or mechanical properties of the Achilles tendon in long-distance runners.  相似文献   

6.
Our purpose was to compare joint loads between habitual rearfoot (hRF) and habitual mid/forefoot strikers (hFF), rearfoot (RFS) and mid/forefoot strike (FFS) patterns, and shorter stride lengths (SLs). Thirty-eight hRF and hFF ran at their normal SL, 5% and 10% shorter, as well as with the opposite foot strike. Three-dimensional ankle, knee, patellofemoral (PF) and hip contact forces were calculated. Nearly all contact forces decreased with a shorter SL (1.2–14.9% relative to preferred SL). In general, hRF had higher PF (hRF-RFS: 10.8 ± 1.4, hFF-FFS: 9.9 ± 2.0 BWs) and hip loads (axial hRF-RFS: ?9.9 ± 0.9, hFF-FFS: ?9.6 ± 1.0 BWs) than hFF. Many loads were similar between foot strike styles for the two groups, including axial and lateral hip, PF, posterior knee and shear ankle contact forces. Lateral knee and posterior hip contact forces were greater for RFS, and axial ankle and knee contact forces were greater for FFS. The tibia may be under greater loading with a FFS because of these greater axial forces. Summarising, a particular foot strike style does not universally decrease joint contact forces. However, shortening one’s SL 10% decreased nearly all lower extremity contact forces, so it may hold potential to decrease overuse injuries associated with excessive joint loads.  相似文献   

7.
Although the biomechanical properties of the various types of running foot strike (rearfoot, midfoot, and forefoot) have been studied extensively in the laboratory, only a few studies have attempted to quantify the frequency of running foot strike variants among runners in competitive road races. We classified the left and right foot strike patterns of 936 distance runners, most of whom would be considered of recreational or sub-elite ability, at the 10 km point of a half-marathon/marathon road race. We classified 88.9% of runners at the 10 km point as rearfoot strikers, 3.4% as midfoot strikers, 1.8% as forefoot strikers, and 5.9% of runners exhibited discrete foot strike asymmetry. Rearfoot striking was more common among our sample of mostly recreational distance runners than has been previously reported for samples of faster runners. We also compared foot strike patterns of 286 individual marathon runners between the 10 km and 32 km race locations and observed increased frequency of rearfoot striking at 32 km. A large percentage of runners switched from midfoot and forefoot foot strikes at 10 km to rearfoot strikes at 32 km. The frequency of discrete foot strike asymmetry declined from the 10 km to the 32 km location. Among marathon runners, we found no significant relationship between foot strike patterns and race times.  相似文献   

8.
This study aimed to investigate the activation of lower limb muscles during barefoot and shod running with forefoot or rearfoot footfall patterns. Nine habitually shod runners were asked to run straight for 20 m at self-selected speed. Ground reaction forces and thigh and shank muscle surface electromyographic (EMG) were recorded. EMG outcomes (EMG intensity [iEMG], latency between muscle activation and ground reaction force, latency between muscle pairs and co-activation index between muscle pairs) were compared across condition (shod and barefoot), running cycle epochs (pre-strike, strike, propulsion) and footfall (rearfoot and forefoot) by ANOVA. Condition affected iEMG at pre-strike epoch. Forefoot and rearfoot strike patterns induced different EMG activation time patterns affecting co-activation index for pairs of thigh and shank muscles. All these timing changes suggest that wearing shoes or not is less important for muscle activation than the way runners strike the foot on the ground. In conclusion, the guidance for changing external forces applied on lower limbs should be pointed to the question of rearfoot or forefoot footfall patterns.  相似文献   

9.
BackgroundPrevious studies of foot strike patterns of distance runners in road races have typically found that the overwhelming majority of shod runners initially contact the ground on the rearfoot. However, none of these studies has attempted to quantify foot strike patterns of barefoot or minimally shod runners. This study classifies foot strike patterns of barefoot and minimally shod runners in a recreational road race.MethodsHigh-speed video footage was obtained of 169 barefoot and 42 minimally shod distance runners at the 2011 New York City Barefoot Run. Foot strike patterns were classified for each runner, and frequencies of forefoot, midfoot, and rearfoot striking were compared between the barefoot and minimally shod groups.ResultsA total of 59.2% of barefoot runners were forefoot strikers, 20.1% were midfoot strikers, and 20.7% were rearfoot strikers. For minimally shod runners, 33.3% were forefoot strikers, 19.1% were midfoot strikers, and 47.6% were rearfoot strikers. Foot strike distributions for barefoot and minimally shod runners were significantly different both from one another and from previously reported foot strike distributions of shod road racers.ConclusionFoot strike patterns differ between barefoot and minimally shod runners, with forefoot striking being more common, and rearfoot striking less common in the barefoot group.  相似文献   

10.
Purpose: This study aims to determine the foot strike patterns (FSPs) and neutral support (no inversion [INV]/eversion [EVE] and no foot rotation) in preschool children, as well as to determine the influence of shod/unshod conditions and sex. Methods: A total of 1356 children aged 3–6 years (673 boys and 683 girls) participated in this study. A sagittal and frontal-plane video (240?Hz) was recorded using a high-speed camcorder to record the following variables: rearfoot strike (RFS), midfoot strike (MFS), forefoot strike (FFS), inversion/ eversion (INV/EVE) and foot rotation on initial contact. Results: There were no between-sex significant differences in both shod and unshod conditions in RFS. In the unshod condition, there was a significant reduction (p?Conclusion: In preschool children, no between-sex differences were found in relation to prevalence of RFS and neutral support (no INV/EVE). Shod running alters FSP of running barefoot, producing a significant increase of RFS prevalence.  相似文献   

11.
Research has focused on the effects of acute strike pattern modifications on lower extremity joint stiffness and running economy (RE). Strike pattern modifications on running biomechanics have mostly been studied while runners complete short running bouts. This study examined the effects of an imposed forefoot strike (FFS) on RE and ankle and knee joint stiffness before and after a long run in habitual rearfoot strike (RFS) runners. Joint kinetics and RE were collected before and after a long run. Sagittal joint kinetics were computed from kinematic and ground reaction force data that were collected during over-ground running trials in 13 male runners. RE was measured during treadmill running. Knee flexion range of motion, knee extensor moment and ankle joint stiffness were lower while plantarflexor moment and knee joint stiffness were greater during imposed FFS compared with RFS. The long run did not influence the difference in ankle and knee joint stiffness between strike patterns. Runners were more economical during RFS than imposed FFS and RE was not influenced by the long run. These findings suggest that using a FFS pattern towards the end of a long run may not be mechanically or metabolically beneficial for well-trained male RFS runners.  相似文献   

12.
PurposeThis study examined variation in foot strike types, lower extremity kinematics, and arch height and stiffness among Tarahumara Indians from the Sierra Tarahumara, Mexico.MethodsHigh speed video was used to study the kinematics of 23 individuals, 13 who habitually wear traditional minimal running sandals (huaraches), and 10 who habitually wear modern, conventional running shoes with elevated, cushioned heels and arch support. Measurements of foot shape and arch stiffness were taken on these individuals plus an additional sample of 12 individuals.ResultsMinimally shod Tarahumara exhibit much variation with 40% primarily using midfoot strikes, 30% primarily using forefoot strikes, and 30% primarily using rearfoot strikes. In contrast, 75% of the conventionally shod Tarahumara primarily used rearfoot strikes, and 25% primarily used midfoot strikes. Individuals who used forefoot or midfoot strikes landed with significantly more plantarflexed ankles, flexed knees, and flexed hips than runners who used rearfoot strikes. Foot measurements indicate that conventionally shod Tarahumara also have significantly less stiff arches than those wearing minimal shoes.ConclusionThese data reinforce earlier studies that there is variation among foot strike patterns among minimally shod runners, but also support the hypothesis that foot stiffness and important aspects of running form, including foot strike, differ between runners who grow up using minimal versus modern, conventional footwear.  相似文献   

13.
BackgroundInvestigations of running gait among barefoot and populations have revealed a diversity of foot strike behaviors, with some preferentially employing a rearfoot strike (RFS) as the foot touches down while others employ a midfoot strike (MFS) or forefoot strike (FFS). Here, we report foot strike behavior and joint angles among traditional Hadza hunter-gatherers living in Northern Tanzania.MethodsHadza adults (n = 26) and juveniles (n = 14) ran at a range of speeds (adults: mean 3.4 ± 0.7 m/s, juveniles: mean 3.2 ± 0.5 m/s) over an outdoor trackway while being recorded via high-speed digital video. Foot strike type (RFS, MFS, or FFS) and hind limb segment angles at foot strike were recorded.ResultsHadza men preferentially employed MFS (86.7% of men), while Hadza women and juveniles preferentially employed RFS (90.9% and 85.7% of women and juveniles, respectively). No FFS was recorded. Speed, the presence of footwear (sandals vs. barefoot), and trial duration had no effect on foot strike type.ConclusionUnlike other habitually barefoot populations which prefer FFS while running, Hadza men preferred MFS, and Hadza women and juveniles preferred RFS. Sex and age differences in foot strike behavior among Hadza adults may reflect differences in running experience, with men learning to prefer MFS as they accumulate more running experience.  相似文献   

14.
ABSTRACT

We examined the association between footfall pattern and characteristics of lower limb muscle function and compared lower limb muscle function between forefoot and rearfoot runners. Fifteen rearfoot and 16 forefoot runners were evaluated using ultrasonography of the gastrocnemii and tibialis anterior while strike index and heel strike angle quantified footfall pattern. Higher strike index was associated with lower medial gastrocnemius echo intensity (p = 0.05), lower lateral gastrocnemius echo intensity (p = 0.04), smaller tibialis anterior pennation angle (p = 0.05), and longer lateral gastrocnemius fascicle length (p = 0.04). Larger heel strike angle was associated with smaller medial gastrocnemius cross-sectional area (p = 0.04), shorter lateral gastrocnemius fascicle length (p < 0.01), and lower plantar flexion moment (p < 0.01). Larger plantar flexion moment was associated with lesser medial gastrocnemius echo intensity (p = 0.04), lesser lateral gastrocnemius echo intensity (p = 0.03), and greater lateral gastrocnemius fascicle length (p = 0.02). A smaller plantar flexion moment, larger heel strike angle, lower tibialis anterior echo intensity, larger tibialis anterior pennation angle, and smaller lateral gastrocnemius pennation angle were observed in rearfoot compared to forefoot runners (p < 0.05). Lower limb muscle architecture is associated with footfall pattern and ankle mechanics during running.

Abbreviation: EMG: electromyographic; MG: medial gastrocnemius; LG: lateral gastrocnemius; TA: tibialis anterior; EI: echo intensity; CSA: cross-sectional area; PA: pennation angle; FL: fascicle length; FT: fat thickness  相似文献   

15.
The purpose of this study was to determine whether there are differences in the perceived comfort, plantar pressure, and rearfoot motion between laced running shoes and elastic-covered running shoes. Fifteen male amateur runners participated in the study. Each participant was assigned laced running shoes and elastic-covered running shoes for use during the study. The perceived comfort, plantar loading, and rearfoot motion control of each type of shoes during running were recorded. When the laced running shoes and elastic-covered running shoes were compared, the elastic-covered running shoes were given a lower perceived comfort rating in terms of shoe length, width, heel cup fitting, and forefoot cushioning. The elastic-covered running shoes also recorded higher peak plantar pressure in the lateral side of the forefoot, as well as larger maximum rearfoot pronation. Overall, shoelaces can help runners obtain better foot-shoe fit. They increase the perceived comfort, and decrease the maximum pronation and plantar pressure. Moreover, shoelaces may help prevent injury in running by allowing better control of the aforementioned factors.  相似文献   

16.
Runners tend to shift from a rearfoot to a forefoot strike pattern when running barefoot. However, it is unclear how the first attempts at running barefoot affect habitually rearfoot shod runners. Due to the inconsistency of their recently adopted barefoot technique, a number of new barefoot-related running injuries are emerging among novice barefoot runners. The aim of this study was therefore to analyse the influence of three running conditions (natural barefoot [BF], barefoot with a forced rearfoot strike [BRS], and shod [SH]) on muscle activity and impact accelerations in habitually rearfoot shod runners. Twenty-two participants ran at 60% of their maximal aerobic speed while foot strike, tibial and head impact accelerations, and tibialis anterior (TA), peroneus longus (PL), gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) muscle activity were registered. Only 68% of the runners adopted a non-rearfoot strike pattern during BF. Running BF led to a reduction of TA activity as well as to an increase of GL and GM activity compared to BRS and SH. Furthermore, BRS increased tibial peak acceleration, tibial magnitude and tibial acceleration rate compared to SH and BF. In conclusion, 32% of our runners showed a rearfoot strike pattern at the first attempts at running barefoot, which corresponds to a running style (BRS) that led to increased muscle activation and impact accelerations and thereby to a potentially higher risk of injury compared to running shod.  相似文献   

17.
The purpose of this study was to examine the effects of step length and foot strike pattern along with their interaction on tibiofemoral joint (TFJ) and medial compartment TFJ kinetics during running. Nineteen participants ran with a rear foot strike pattern at their preferred speed using a short (?10%), preferred, and long (+10%) step length. These step length conditions were then repeated using a forefoot strike pattern. Regardless of foot strike pattern, a 10% shorter step length resulted in decreased peak contact force, force impulse per step, force impulse per kilometre, and average loading rate at the TFJ and medial compartment, while a 10% increased step length had the opposite effects (all P < 0.05). A forefoot strike pattern significantly lowered TFJ and medial compartment TFJ average loading rates compared with a rear foot strike pattern (both <0.05) but did not change TFJ or medial compartment peak force, force impulse per step, or force impulse per km. The combination of a shorter step length and forefoot strike pattern produced the greatest reduction in peak medial compartment contact force (P < 0.05). Knowledge of these running modification effects may be relevant to the management or prevention of TFJ injury or pathology among runners.  相似文献   

18.
The aim of this study was to determine the influence of barefoot running on foot-strike patterns, eversion–inversion, running speed and vertical foot rotation in endurance runners. Eighty healthy recreational runners (age = 34.11 ± 12.95 years old, body mass index = 22.56 ± 2.65 kg · m?2) performed trials in shod/unshod running conditions on a treadmill at comfortable and competitive self-selected speeds. Data were collected by systematic observation of lateral and back recordings at 240 Hz. McNemar’s test indicated significant differences between shod/unshod conditions and foot strike at comfortable and competitive speeds (< 0.001). Speed was related to vertical foot rotation type for shod (< 0.01) and unshod conditions (< 0.05). Significant differences were found between shod/unshod conditions in foot rotation at comfortable running speeds (< 0.001) and competitive running speeds (< 0.01). No significant difference was found in inversion or eversion (≥ 0.05). In conclusion, the results suggest that running kinematics, in terms of foot-strike patterns and vertical foot rotation, differ between shod/unshod conditions, while the inversion or eversion degree remains unchanged.  相似文献   

19.
BackgroundForefoot strike (FFS) and rearfoot strike (RFS) runners differ in their kinematics, force loading rates, and joint loading patterns, but the timing of their muscle activation is less clear.MethodsForty recreational and highly trained runners ran at four speeds barefoot and shod on a motorized treadmill. “Barefoot” runners wore thin, five-toed socks and shod runners wore neutral running shoes. Subjects were instructed to run comfortably at each speed with no instructions about foot strike patterns.ResultsEleven runners landed with an FFS when barefoot and shod and eleven runners landed with an RFS when barefoot and shod. The 18 remaining runners shifted from an FFS when barefoot to an RFS when shod (shifters). Shod shifters ran with a lower stride frequency and greater stride length than all other runners. All FFS runners landed with more plantarflexed ankles and more vertical lower legs at the beginning of stance compared to RFS runners. FFS runners activated their plantarflexor muscles 11% earlier and 10% longer than RFS runners.ConclusionThis earlier and longer relative activation of the plantarflexors likely enhances the capacity for the passive structures of the foot and ankle to store elastic energy, and may also enhance the performance of the active muscle by increasing the storage of elastic strain energy in the cross-bridges and activated titin.  相似文献   

20.
Despite the growing interest in minimalist shoes, no studies have compared the efficacy of different types of minimalist shoe models in reproducing barefoot running patterns and in eliciting biomechanical changes that make them differ from standard cushioned running shoes. The aim of this study was to investigate the acute effects of different footwear models, marketed as “minimalist” by their manufacturer, on running biomechanics. Six running shoes marketed as barefoot/minimalist models, a standard cushioned shoe and the barefoot condition were tested. Foot–/shoe–ground pressure and three-dimensional lower limb kinematics were measured in experienced rearfoot strike runners while they were running at 3.33 m · s?1 on an instrumented treadmill. Physical and mechanical characteristics of shoes (mass, heel and forefoot sole thickness, shock absorption and flexibility) were measured with laboratory tests. There were significant changes in foot strike pattern (described by the strike index and foot contact angle) and spatio-temporal stride characteristics, whereas only some among the other selected kinematic parameters (i.e. knee angles and hip vertical displacement) changed accordingly. Different types of minimalist footwear models induced different changes. It appears that minimalist footwear with lower heel heights and minimal shock absorption is more effective in replicating barefoot running.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号