首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The aims of the present study were to examine quantitatively ground reaction forces, kinematics, and muscle activations during the windmill softball pitch, and to determine relationships between knee valgus and muscle activations, ball velocity and muscle activation as well as ball velocity and ground reaction forces. It was hypothesized that there would be an inverse relationship between degree of knee valgus and muscle activation, a direct relationship between ground reaction forces and ball velocity, and non-stride leg muscle activations and ball velocity. Ten female windmill softball pitchers (age 17.6 ± 3.47 years, stature 1.67 ± 0.07 m, weight 67.4 ± 12.2 kg) participated. Dependent variables were ball velocity, surface electromyographic (sEMG), kinematic, and kinetic data while the participant was the independent variable. Stride foot contact reported peak vertical forces of 179% body weight. There were positive relationships between ball velocity and ground reaction force (r = 0.758, n = 10, P = 0.029) as well as ball velocity and non-stride leg gluteus maximus (r = 0.851, n = 10, P = 0.007) and medius (r = 0.760, n = 10, P = 0.029) muscle activity, while there was no notable relationship between knee valgus and muscle activation. As the windmill softball pitcher increased ball velocity, her vertical ground reaction forces also increased. Proper conditioning of the lumbopelvic-hip complex, including the gluteals, is essential for injury prevention. From the data presented, it is evident that bilateral strength and conditioning of the gluteal muscle group is salient in the windmill softball pitch as an attempt to decrease incidence of injury.  相似文献   

2.
This study aimed to investigate whether high peak ground reaction forces and high average loading rates are necessary to bowl fast. Kinematic and kinetic bowling data were collected for 20 elite male fast bowlers. A moderate non-significant correlation was found between ball speed and peak vertical ground reaction force with faster bowlers tending to have lower peak vertical ground reaction force (r = ?0.364, P = 0.114). Faster ball speeds were correlated with both lower average vertical and lower average horizontal loading rates (r = ?0.452, P = 0.046 and r = ?0.484, P = 0.031, respectively). A larger horizontal (braking) impulse was associated with a faster ball speed (r = 0.574, P = 0.008) and a larger plant angle of the front leg (measured from the vertical) at front foot contact was associated with a larger horizontal impulse (r = 0.706, P = 0.001). These findings suggest that there does not necessarily need to be a trade-off between maximum ball release speed and the forces exerted on fast bowlers (peak ground reaction forces and average loading rates). Furthermore, it appears that one of the key determinants of ball speed is the horizontal impulse generated at the ground over the period from front foot contact until ball release.  相似文献   

3.
Although most ACL injury prevention programmes encourage greater hip and knee flexion during landing, it remains unknown how this technique influences tibiofemoral joint forces. We examined whether a landing strategy utilising greater hip and knee flexion decreases tibiofemoral anterior shear and compression. Twelve healthy women (25.9 ± 3.5 years) performed a drop-jump task before and after a training session (10–15 min) that emphasised greater hip and knee flexion. Peak tibiofemoral anterior shear and compressive forces were calculated using an electromyography (EMG)-driven knee model that incorporated joint kinematics, EMG and participant-specific muscle volumes and patella tendon orientation measured using magnetic resonance imaging (MRI). Participants demonstrated a decrease in peak anterior tibial shear forces (11.1 ± 3.3 vs. 9.6 ± 2.7 N · kg?1; P = 0.008) and peak tibiofemoral compressive forces (68.4 ± 7.6 vs. 62.0 ± 5.5 N · kg?1; P = 0.015) post-training. The decreased peak anterior tibial shear was accompanied by a decrease in the quadriceps anterior shear force, while the decreased peak compressive force was accompanied by decreased ground reaction force and hamstring forces. Our data provide justification for injury prevention programmes that encourage greater hip and knee flexion during landing to reduce tibiofemoral joint loading.  相似文献   

4.
Abstract

Anterior cruciate ligament (ACL) rupture, during ski-landing, is caused by excessive knee joint forces and kinematics, like anterior tibial translation, internal tibial rotation, and valgus rotation. It is not well understood how these forces/kinematics are directly related to ski-landing impact. In the present study, we applied simulated ski-landing impact to knee specimens, and examined joint force/kinematic responses and their correlations with impact force. Ten human cadaveric knees were subjected to axial impact loading at 70° of flexion to simulate ski-landing impact. Impact was repeated with incremental magnitude until ACL failure. Axial impact forces, anterior-posterior and medial-lateral tibial forces were measured using a tri-axial load cell. Anterior-posterior tibial translation, internal-external tibial rotation, and valgus-varus rotation were determined using a motion-capture system. We found positive correlations of axial impact force with anterior tibial force, medial tibial force, anterior tibial translation, internal tibial rotation, and valgus joint rotation. Axial impact forces were more strongly correlated with anterior tibial forces (R 2 = 0.937 ± 0.050), anterior tibial translation (R 2 = 0.916 ± 0.059), and internal tibial rotation (R 2 = 0.831 ± 0.141) than medial tibial force (R 2 = 0.677 ± 0.193) and valgus joint rotation (R 2 = 0.630+0.271). During ski-landing, these joint forces/kinematics can synergistically act to increase ACL injury risk, whereby the failure mechanism would be dominated by anterior tibial forces, anterior tibial translation, and internal tibial rotation.  相似文献   

5.
Knee peak torque (PT) is associated to jump performance in volleyball players. It is not clear whether muscle strength imbalances of the knee joint can influence jump performance. The purpose of study was to analyse the association between PT and knee muscular imbalances with jump performance in professional volleyball players. Eleven elite male volleyball players (90.3 ± 9.7 kg body mass and 1.94 ± 0.06 m height) were evaluated in an isokinetic dynamometer at speeds of 60, 180 and 300 deg/s. Muscle strength imbalances were obtained through calculation of contralateral deficit between limbs and the conventional ratio (hamstrings/quadriceps). Countermovement jump (CMJ) was performed on a force plate to calculate mechanical power and height. Association was found between knee extensor PT at 180 deg/s with CMJ power (r = 0.610, p = 0.046). Conventional ratio at 300 deg/s showed negative association with CMJ (r = ?0.656, p = 0.029). The optimal ratio between knee extensors PT in relation to the flexors PT is associated with the greater mechanical power in CMJ. Contralateral deficit does not seem to be associated with the CMJ performance. Considering the knee extensor PT is associated with CMJ power, our findings suggest that strength-based training in volleyball athletes should not omit the conventional muscle ratio.  相似文献   

6.
Analysis of lower limb work-energy patterns in world-class race walkers   总被引:1,自引:1,他引:0  
The aim of this study was to analyse lower limb work patterns in world-class race walkers. Seventeen male and female athletes race walked at competitive pace. Ground reaction forces (1000 Hz) and high-speed videos (100 Hz) were recorded and normalised joint moments, work and power, stride length, stride frequency and speed estimated. The hip flexors and extensors were the main generators of energy (24.5 J (±6.9) and 40.3 J (±8.3), respectively), with the ankle plantarflexors (16.3 J (±4.3)) contributing to the energy generated during late stance. The knee generated little energy but performed considerable negative work during swing (?49.1 J (±8.7)); the energy absorbed by the knee extensors was associated with smaller changes in velocity during stance (r = .783, P < .001), as was the energy generated by the hip flexors (r = ?.689, P = .002). The knee flexors did most negative work (?38.6 J (±5.8)) and the frequent injuries to the hamstrings are probably due to this considerable negative work. Coaches should note the important contributions of the hip and ankle muscles to energy generation and the need to develop knee flexor strength in reducing the risk of injury.  相似文献   

7.
Abstract

The aims of this study were to (1) investigate the influence of general anthropometric variables, handball-specific anthropometric variables, and upper-limb power and strength on ball-throwing velocity in a standing position (νball), and (2) predict this velocity using multiple regression methods. Forty-two skilled male handball players (age 21.0 ± 3.0 years; height = 1.81 ± 0.07 m; body mass = 78.3 ± 11.3 kg) participated in the study. We measured general anthropometric variables (height, body mass, lean mass, body mass index) and handball-specific anthropometric parameters (hand size, arm span). Upper-limb dynamic strength was assessed using a medicine ball (2 kg) throwing test, and power using a one-repetition maximum bench-press test. All the variables studied were correlated with ball velocity. Medicine ball throwing performance was the best predictor (r = 0.80). General anthropometric variables were better predictors (r = 0.55–0.70) than handball-specific anthropometric variables (r = 0.35–0.51). The best multiple regression model accounted for 74% of the total variance and included body mass, medicine ball throwing performance, and power output in the 20-kg bench press. The equation formulated could help trainers, athletes, and professionals detect future talent and test athletes' current fitness.  相似文献   

8.
The purpose of the current study was to examine the effect of 6 weeks of whole body vibration training (WBVT) on body composition, muscle activity of the gastrocnemius and vastus lateralis, gastrocnemius muscle architecture (static and dynamic) and ground reaction forces (performance jump) during the take-off phase of a countermovement jump in young healthy adult males. A total of 33 men (23.31 ± 5.62 years) were randomly assigned to a whole body vibration group (experimental group, EGWBVT: n = 17; 22.11 ± 4.97 years) or a control group (CG: n = 16; 24.5 ± 6.27 years). The total duration of the intervention phase (WBVT) was 6 weeks with a frequency of 3 sessions per week. Statistically significant differences were observed (P ≤ 0.05) between pre- and post-test in the power peak (Δ 1.91 W · kg?1; P = 0.001), take-off velocity (0.1 cm · s?1; P = 0.002) and jump height (Δ 0.4 cm; P = 0.002) for EGWBVT. There were no statistically significant differences in any of the body composition and muscle architecture variables. Moreover, no significant differences were found between EGWBVT and CG nor changes in muscle activity during take-off phase of the gastrocnemius and vastus lateralis pre- versus post-training. This study suggests that a 6-week WBVT programme with increasing intensity improves jump performance but does not alter muscle activity nor muscle architecture in healthy young men.  相似文献   

9.
The purpose of this study was to compare the lower extremity inter-joint coordination of different collision forces runners during running braking phase. A dynamical system approach was used to analyse the inter-joint coordination parameters. Data were collected with six infra-red cameras and two force plates. According to the impact peak of the vertical ground reaction force, twenty habitually rearfoot-strike runners were categorised into three groups: high collision forces runners (HF group, n = 8), medium collision forces runners (MF group, n = 5), and low collision forces runners (LF group, n = 7). There were no significant differences among the three groups in the ankle and knee joint angle upon landing and in the running velocity (p > 0.05). The HF group produced significantly smaller deviation phase (DP) of the hip flexion/extension-knee flexion/extension during the braking phase compared with the MF and LF groups (p < 0.05). The DP of the hip flexion/extension-knee flexion/extension during the braking phase correlated negatively with the collision force (p < 0.05). The disparities regarding the flexibility of lower extremity inter-joint coordination were found in high collision forces runners. The efforts of the inter-joint coordination and the risk of running injuries need to be clarified further.  相似文献   

10.
The aim of this study was to investigate the effects of strengthening and stretching exercises on running kinematics and kinetics in older runners. One hundred and five runners (55–75 years) were randomly assigned to either a strengthening (n = 36), flexibility (n = 34) or control (n = 35) group. Running kinematics and kinetics were obtained using an eight-camera system and an instrumented treadmill before and after the eight-week exercise protocol. Measures of strength and flexibility were also obtained using a dynamometer and inclinometer/goniometer. A time effect was observed for the excursion angles of the ankle sagittal (P = 0.004, d = 0.17) and thorax/pelvis transverse (P < 0.001, d = 0.20) plane. Similarly, a time effect was observed for knee transverse plane impulse (P = 0.013, d = 0.26) and ground reaction force propulsion (P = 0.042, d = ?0.15). A time effect for hip adduction (P = 0.006, d = 0.69), ankle dorsiflexion (P = 0.002, d = 0.47) and hip internal rotation (P = 0.048, d = 0.30) flexibility, and hip extensor (P = 0.001, d = ?0.48) and ankle plantar flexor (P = 0.01, d = 0.39) strength were also observed. However, these changes were irrespective of exercise group. The results of the present study indicate that an eight-week stretching or strengthening protocol, compared to controls, was not effective in altering age-related running biomechanics despite changes in ankle and trunk kinematics, knee kinetics and ground reaction forces along with alterations in muscle strength and flexibility were observed over time.  相似文献   

11.
ABSTRACT

The purpose of this study was to determine the influence of pelvis and torso angular jerk on a performance indicator of hitting, specifically hand velocity. Eighteen softball athletes were analysed (20.3 ± 1.6 years; 164.9 ± 24.9 cm; 74.4 ± 14.0 kg). Participants were instructed to execute 3 maximum effort swings off a stationary tee at the middle “strike-zone” location. Angular jerk data were analysed during the acceleration phase of the swing, the time between foot contact and ball contact. Quadratic regression analyses were conducted to examine the relationship of minimal pelvis angular jerk and minimal torso angular jerk to angular hand velocity at ball contact. No significant relationship was found between pelvis angular jerk and angular hand velocity at ball contact (r = 0.192, p = 0.754). The curvilinear regression model for pelvis angular jerk produced: R2 = 0.037; F (2, 17) = 0.288; p = 0.754. Lack of significant findings suggests a relationship between jerk and angular hand velocity does not exist within female softball hitting. Future research should investigate the timing of minimal jerk through the acceleration phase as a predictor of angular hand velocity, rather than the value of jerk itself.  相似文献   

12.
This study aims to determine if biomechanically informed injury prevention training can reduce associated factors of anterior cruciate ligament injury risk among a general female athletic population. Female community-level team sport athletes, split into intervention (n = 8) and comparison groups (n = 10), completed a sidestepping movement assessment prior to and following a 9-week training period, in which kinetic, kinematic and neuromuscular data were collected. The intervention group completed a biomechanically informed training protocol, consisting of plyometric, resistance and balance exercises, adjunct to normal training, for 15–20 min twice a week. Following the 9-week intervention, total activation of the muscles crossing the knee (n = 7) decreased for both the training (? ?15.02%, d = 0.45) and comparison (? ?9.68%, d = 0.47) groups. This decrease was accompanied by elevated peak knee valgus (? +27.78%, d = ?0.36) and internal rotation moments (? +37.50%, d = ?0.56) in the comparison group, suggesting that female community athletes are at an increased risk of injury after a season of play. Peak knee valgus and internal rotation knee moments among athletes who participated in training intervention did not change over the intervention period. Results suggest participation in a biomechanically informed training intervention may mitigate the apparent deleterious effects of community-level sport participation.  相似文献   

13.
Despite an increase in anterior knee laxity (AKL) during the adolescent growth spurt in girls, it is unknown whether landing biomechanics are affected by this change. This study investigated whether pubescent girls with higher AKL displayed differences in their lower limb strength or landing biomechanics when performing a horizontal leap movement compared to girls with lower AKL. Forty-six pubescent girls (10–13 years) were tested at the time of their peak height velocity (PHV). Passive AKL was quantified and used to classify participants into higher (HAKL; peak displacement > 4 mm) and lower (LAKL; peak displacement < 3 mm) AKL groups (n = 15/group). Three-dimensional kinematics, ground reaction forces (GRF) and muscle activation patterns were assessed during a horizontal leap landing. HAKL participants displayed significantly (P < 0.05) reduced hip abduction, increased hip abduction moments, as well as earlier hamstring muscle and later tibialis anterior activation compared to LAKL participants. Girls with HAKL displayed compensatory landing biomechanics, which are suggested to assist the functional stability of their knees during this dynamic task. Further research is warranted, however, to confirm or refute this notion.  相似文献   

14.
Undulatory underwater swimming (UUS) is one of the major skills contributing to performance in competitive swimming. UUS has two phases– the upbeat is performed by hip extension and knee flexion, and the downbeat is the converse action. The purpose of this study was to determine which kinematic variables of the upbeat and downbeat are associated with prone UUS performance in an elite sample. Ten elite participants were filmed performing three prone 20 m UUS trials. Seven landmarks were manually digitised to calculate eighteen kinematic variables, plus the performance variable– horizontal centre of mass velocity (VCOM). Mean VCOM was significantly correlated with body wave velocity (upbeat r = 0.81, downbeat r = 0.72), vertical toe velocity (upbeat r = 0.71, downbeat r = 0.86), phase duration (upbeat r = ?0.79), peak hip angular velocity (upbeat r = 0.73) and mean knee angular velocity (upbeat r = ?0.63), all significant at P < 0.05. A multiple stepwise regression model explained 78% of variance in mean VCOM. Peak toe velocity explained 72% of the variance, and mean body wave velocity explained an additional 6%. Elite swimmers should strive for a high peak toe velocity and a fast caudal transfer of momentum to optimise underwater undulatory swimming performance.  相似文献   

15.
In Paralympic seated throwing events, the athlete can throw with and without an assistive pole. This study aimed to identify and compare performance-related kinematic variables associated with both seated throwing techniques. Twenty-nine non-disabled males (21.9 ± 2.6 years) performed 12 maximal throws using a 1-kg ball in two conditions (no-pole and pole). Automatic 3D-kinematic tracking (150 Hz) and temporal data were acquired. There was no significant difference between ball speeds at the point of release between conditions (no-pole = 12.8 ± 1.6 m/s vs. pole = 12.9 ± 1.5 m/s). There were four kinematic variables that were strongly correlated with ball speed when throwing with or without an assistive pole. These variables were elbow flexion at the start phase (pole r = .39 and no-pole r = .41), maximum shoulder external rotation angular velocity during the arm cocking phase (pole r = .42), maximum shoulder internal rotation angular velocity during the arm acceleration phase (pole r = .47), and should internal rotation angular velocity at the instant of ball release (pole r = .40). The pole clearly influenced the throwing technique with all four strongly correlated variables identified in this condition, compared to only one during the no-pole condition. When using the pole, participants produced significantly higher shoulder internal rotation angular velocities during the arm acceleration phase (pole = 367 ± 183°/s vs. no-pole = 275 ± 178°/s, p < .05) and at the instant of ball release (pole = 355 ± 115°/s vs. no-pole = 264 ± 120°/s, p < .05), compared to throwing without the pole. These findings have implications for the development of evidence-based classification systems in Paralympic seated throwing, and facilitate research that investigates the impact of impairment on seated throwing performance.  相似文献   

16.
The potential to use the vertical jump (VJ) to assess both athletic performance and risk of anterior cruciate ligament (ACL) injury could have widespread clinical implications since VJ is broadly used in high school, university, and professional sport settings. Although drop jump (DJ) and VJ observationally exhibit similar lower extremity mechanics, the extent to which VJ can also be used as screening tool for ACL injury risk has not been assessed. This study evaluated whether individuals exhibit similar knee joint frontal plane kinematic and kinetic patterns when performing VJs compared with DJs. Twenty-eight female collegiate athletes performed DJs and VJs. Paired t-tests indicated that peak knee valgus angles did not differ significantly between tasks (p = 0.419); however, peak knee internal adductor moments were significantly larger during the DJ vs. VJ (p < 0.001). Pearson correlations between the DJ and VJ revealed strong correlations for knee valgus angles (r = 0.93, p < 0.001) and for internal knee adductor moments (r = 0.82, p < 0.001). Our results provide grounds for investigating whether frontal plane knee mechanics during VJ can predict ACL injuries and thus can be used as an effective tool for the assessment of risk of ACL injury in female athletes.  相似文献   

17.
The effectiveness of vertical drop jumps (VDJs) to screen for non-contact ACL injuries is unclear. This may be contributed to by discrete point analysis, which does not evaluate patterns of movement. Also, limited research exists on the second landing of VDJs, potential lower limb performance asymmetries and the effect of fatigue. Statistical parametric mapping investigated the main effects of landing, limb dominance and a high intensity, intermittent exercise protocol (HIIP) on VDJ biomechanics. Twenty-two male athletes (21.9 ± 1.1 years, 180.5 ± 5.5 cm, 79.4 ± 7.8 kg) performed VDJs pre- and post-HIIP. Repeated measures ANOVA identified pattern differences during the eccentric phases of the first and second landings bilaterally. The first landing displayed greater (internal) knee flexor (η2 = 0.165), external rotator (η2 = 0.113) and valgus (η2 = 0.126) moments and greater hip (η2 = 0.062) and knee (η2 = 0.080) flexion. The dominant limb generated greater knee flexor (η2 = 0.062), external rotator (η2 = 0.110) and valgus (η2 = 0.065) moments. The HIIP only had one effect, increased thoracic flexion relative to the pelvis (η2 = 0.088). Finally, the dominant limb demonstrated greater knee extensor moments during the second landing (η2 = 0.100). ACL injury risk factors were present in both landings of VDJs with the dominant limb at potentially greater injury risk. Therefore, VDJ screenings should analyse both landings bilaterally.  相似文献   

18.
Whilst previous research has highlighted significant relationships between golfers’ clubhead velocity (CHV) and their vertical jump height and maximum strength, these field-based protocols were unable to measure the actual vertical ground reaction force (vGRF) variables that may correlate to performance. The aim of this study was to investigate relationships between isometric mid-thigh pull (IMTP), countermovement jump (CMJ), squat jump (SJ) and drop jump (DJ) vGRF variables and CHV in highly skilled golfers. Twenty-seven male category 1 golfers performed IMTP, CMJ, SJ and DJ on a dual force platform. The vertical jumps were used to measure positive impulse during different stretch-shortening cycle velocities, with the IMTP assessing peak force (PF) and rate of force development (RFD). Clubhead velocity was measured using a TrackMan launch monitor at a golf driving range. Pearsons correlation coefficient analyses revealed significant relationships between peak CHV and CMJ positive impulse (r = 0.788, < 0.001), SJ positive impulse (r = 0.692; < 0.001), DJ positive impulse (r = 0.561, < 0.01), PF (r = 0.482, < 0.01), RFD from 0–150 ms (r = 0.343, < 0.05) and RFD from 0–200 ms (r = 0.398, < 0.05). The findings from this investigation indicate strong relationships between vertical ground reaction force variables and clubhead velocity.  相似文献   

19.
Lacrosse requires the coordinated performance of many complex skills. One of these skills is shooting on the opponents’ net using one of three techniques: overhand, sidearm or underhand. The purpose of this study was to (i) determine which technique generated the highest ball velocity and greatest shot accuracy and (ii) identify kinematic and kinetic variables that contribute to a high velocity and high accuracy shot. Twelve elite male lacrosse players participated in this study. Kinematic data were sampled at 250 Hz, while two-dimensional force plates collected ground reaction force data (1000 Hz). Statistical analysis showed significantly greater ball velocity for the sidearm technique than overhand (< 0.001) and underhand (< 0.001) techniques. No statistical difference was found for shot accuracy (P > 0.05). Kinematic and kinetic variables were not significantly correlated to shot accuracy or velocity across all shot types; however, when analysed independently, the lead foot horizontal impulse showed a negative correlation with underhand ball velocity (= 0.042). This study identifies the technique with the highest ball velocity, defines kinematic and kinetic predictors related to ball velocity and provides information to coaches and athletes concerned with improving lacrosse shot performance.  相似文献   

20.
Abstract

The purpose of the present study was to compare the three-dimensional kinematics of the lower extremities and ground reaction forces between the instep kick and the kick with the outside area of the foot (outstep kick) in pubertal soccer players. Ten pubertal soccer players performed consecutive kicking trials in random order after a two-step angled approach with the instep and the outstep portion of the foot. Three-dimensional data and ground reaction forces were measured during kicking. Paired t-tests indicated significantly higher (P < 0.05) ball speeds and ball/foot speed ratios for the instep kick compared with the outstep kick. Non-significant differences in angular and linear sagittal plane kinematic parameters, temporal characteristics, and ground reaction forces between the instep and outstep soccer kicks were observed (P > 0.05). In contrast, analysis of variance indicated that the outstep kick displayed higher hip internal rotation and abduction, knee internal rotation, and ankle inversion than the instep kick (P < 0.05). Our results suggest that the instep kick is more powerful than the outstep kick and that different types of kick require different types of skill training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号