首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Power is a fundamental component for many sporting activities; while the load that elicits peak power during different exercises and differences between sexes remains unclear. This study aims to determine the effect of sex and load on kinematic and kinetic variables during the mid-thigh clean pull. Men (n = 10) and women (n = 10) performed the mid-thigh clean pull at intensities of 40%, 60%, 80%, 100%, 120%, and 140% of one repetition maximum (1RM) power clean in a randomised and counter-balanced order, while assessing bar velocity, bar displacement, power, force, and impulse. Two-way analysis of variance revealed that men demonstrated significantly greater (p < 0.05) values for all variables across loads, excluding bar velocity. Men demonstrated significantly greater (p < 0.05) bar velocities with 40–80% 1RM; in contrast, women demonstrated significantly (p < 0.05) higher velocities with 120–140% 1RM. Irrespective of sex significantly greater (p < 0.05), system peak power, bar velocity, and displacement occurred with 40% 1RM. In contrast, peak force and impulse were significantly (p < 0.05) greater with 140% 1RM. When performing the mid-thigh clean pull, to maximise system power or bar velocity, lower loads (40–60% 1RM) are recommended. When training force production or impulse, higher loads (120–140% 1RM) are recommended, when using the mid-thigh clean pull.  相似文献   

2.
The present study aimed to examine how high- and low-speed swimmers organise biomechanical, energetic and coordinative factors throughout extreme intensity swim. Sixteen swimmers (eight high- and eight low-speed) performed, in free condition, 100-m front crawl at maximal intensity and 25, 50 and 75-m bouts (at same pace as the previous 100-m), and 100-m maximal front crawl on the measuring active drag system (MAD-system). A 3D dual-media optoelectronic system was used to assess speed, stroke frequency, stroke length, propelling efficiency and index of coordination (IdC), with power assessed by MAD-system and energy cost by quantifying oxygen consumption plus blood lactate. Both groups presented a similar profile in speed, power output, stroke frequency, stroke length, propelling efficiency and energy cost along the effort, while a distinct coordination profile was observed (F(3, 42) = 3.59, = 0.04). Speed, power, stroke frequency and propelling efficiency (not significant, only a tendency) were higher in high-speed swimmers, while stroke length and energy cost were similar between groups. Performing at extreme intensity led better level swimmers to achieve superior speed due to higher power and propelling efficiency, with consequent ability to swim at higher stroke frequencies. This imposes specific constraints, resulting in a distinct IdC magnitude and profile between groups.  相似文献   

3.
ABSTRACT

When learning swinging skills on a bar there has been conflicting advice in the research literature regarding whether to coach the “gold standard” technique to novices. The present study aimed to determine how technique (joint angle time histories) and (inter-limb) coordination changed as novice gymnasts learned a fundamental gymnastics skill (the upstart). It was hypothesised that both technique and coordination would become more like an expert as learning progressed. Eight novice gymnasts, unable to perform an upstart, underwent four months of training, with the number of successful upstarts out of 10 recorded at the start and then every month subsequently. In the first and last sessions motion capture was used to determine joint kinematics. Root mean squared differences for the joint angle time histories and continuous relative phase at the shoulder and hip were calculated between the novices and an expert gymnast. As training progressed technique and coordination became more like the expert gymnast. The more successful novices were better able to time their actions within the swing than the less successful novices. Gymnastics coaches teach towards a “gold standard” technique since being successful at the skill is not the only goal, as considerations for future skill development are made.  相似文献   

4.
We examined the preferred mode of arm coordination in 14 elite male front-crawl swimmers. Each swimmer performed eight successive swim trials in which target velocity increased from the swimmer's usual 3000-m velocity to his maximal velocity. Actual swim velocity, stroke rate, stroke length and the different arm stroke phases were then calculated from video analysis. Arm coordination was quantified by an index of coordination based on the lag time between the propulsive phases of each arm. The index expressed the three coordination modes in the front crawl: opposition, catch-up and superposition. First, in line with the dynamic approach to movement coordination, the index of coordination could be considered as an order parameter that qualitatively captured arm coordination. Second, two coordination modes were observed: a catch-up pattern (index of coordination?=??8.43%) consisting of a lag time between the propulsive phases of each arm, and a relative opposition pattern (index of coordination?=?0.89%) in which the propulsive phase of one arm ended when the propulsive phase of the other arm began. An abrupt change in the coordination pattern occurred at the critical velocity of 1.8?m?·?s?1, which corresponded to the 100-m pace: the swimmers switched from catch-up to relative opposition. This change in coordination resulted in a reorganization of the arm phases: the duration of the entry and catch phase decreased, while the duration of the pull and push phases increased in relation to the whole stroke. Third, these changes were coupled to increased stroke rate and decreased stroke length, indicating that stroke rate, stroke length, the stroke rate/stroke length ratio, as well as velocity, could be considered as control parameters. The control parameters can be manipulated to facilitate the emergence of specific coordination modes, which is highly relevant to training and learning. By adjusting the control and order parameters within the context of a specific race distance, both coach and swimmer will be able to detect the best adapted pattern for a given race pace and follow how arm coordination changes over the course of training.  相似文献   

5.
Many sports associated with anterior cruciate ligament (ACL) injury require athletes attend to a ball during participation. We investigated effects of attending to a ball on lower extremity mechanics during a side-cut maneuver and if these effects are consistent for males and females. Sagittal and frontal plane hip and knee kinematics and joint moments were measured during side-cut maneuvers in 19 male and 19 female National Collegiate Athletic Association division III basketball players. Participants also experienced two side-cut conditions that required attention to a ball. Our results did not indicate that the effect of attention varies with gender. However, during side-cut conditions while attending to a ball, internal knee adductor moment was 20% greater (p = 0.03) and peak knee flexion angle was 4° larger (p < 0.01). Females demonstrated 5° less hip flexion (p = 0.046), 12° less knee flexion (p < 0.01), and 4° more knee abduction (p = 0.026) at initial contact during all side-cut conditions than males. Attention to a ball may affect lower extremity mechanics relevant to ACL injury. The validity of laboratory studies of lower extremity mechanics for sports that include attention to a ball may be increased if participants are required to attend to a ball during the task.  相似文献   

6.
ABSTRACT

The research aimed to evaluate the effects of an intervention aimed at altering pressure towards the medial aspect of the foot relating to stability mechanisms associated with the golf swing. We hypothesised that by altering the position of the foot pressure, the lower body stabilisation would improve which in turn would enhance weight distribution and underpinning lower body joint kinematics. Eight professional golf association (PGA) golf coaches performed five golf swings, recorded using a nine-camera motion analysis system synchronised with two force platforms. Following verbal intervention, they performed further five swings. One participant returned following a one-year intervention programme and performed five additional golf swings to provide a longitudinal case study analysis. Golf performance was unchanged evidenced by the velocity and angle of the club at ball impact (BI), although the one-year intervention significantly changed the percentage of weight experienced at each foot in the final 9% of downswing, which provided an even weight distribution at BI. This is a highly relevant finding as it indicates that the foot centre of pressure was central to the base of support and in-line with the centre of mass (CoM), indicating significantly increased stability when the CoM is near maximal acceleration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号