首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 691 毫秒
1.
Abstract

The objective of this study was to determine the relationship between different variables measured with a force plate during the swimming start push-off phase and start performance presented by times to 5, 10 and 15?m. Twenty-one women from the Slovenian national swimming team performed two different swim starts (freestyle and undulatory) on a portable force plate to a distance further than 15?m. Correlations between push-off variables and times to 5, 10 and 15?m were quantified through Pearson's product-moment correlation coefficient (r). The variables that significantly correlated (p?<?.05) to all times measured in the two starts performed were: average horizontal acceleration (freestyle: r?=??0.58 to ?0.71; and undulatory: r?=??0.55 to ?0.66), horizontal take-off velocity (freestyle: r?=??0.56 to ?0.69; and undulatory: r?=??0.53 to ?0.67) and resultant take-off velocity (freestyle: r?=??0.53 to ?0.65; and undulatory: r?=??0.52 to ?0.61). None of the variables derived from the vertical force were correlated to swimming start performance (p?>?.05). Based on the results of this study, we can conclude that horizontal take-off velocity and average horizontal acceleration (calculated as the average horizontal force divided by swimmer's body mass) are the variables most related to swimming start performance in experienced swimmers, and therefore could be the preferred measures to monitor swimmers’ efficiency during the push-off phase.  相似文献   

2.
This study examines the hand and foot reaction force recorded independently while performing the kick-start technique. Eleven male competitive swimmers performed three trials for the kick-start with maximum effort. Three force platforms (main block, backplate and handgrip) were used to measure reaction forces during starting motion. Force impulses from the hands, front foot and rearfoot were calculated via time integration. During the kick-start, the vertical impulse from the front foot was significantly higher than that from the rearfoot and the horizontal impulse from the rearfoot was significantly higher than that from the front foot. The force impulse from the front foot was dominant for generating vertical take-off velocity and the force impulse from the rearfoot was dominant for horizontal take-off velocity. The kick-start’s shorter block time in comparison to prior measurements of the grab start was explained by the development of horizontal reaction force from the hands and the rearfoot at the beginning of the starting motion.  相似文献   

3.
Task-specific auditory training can improve sensorimotor processing times of the auditory reaction time (RT). The majority of competitive swimmers do not conduct habitual start training with the electronic horn used to commence a race. We examined the effect of four week dive training interventions on RT and block time (BT) of 10 male adolescent swimmers (age 14.0 ± 1.4 years): dive training with auditory components (speaker and electronic horn) (n = 5) and dive training without auditory components (n = 5). Auditory stimulus dive training significantly reduced swimming start RT, compared with dive training without auditory components (p < 0.01), with a group mean RT reduction of 13 ± 9 ms. Four of the five swimmers that received auditory stimulus training showed medium to large effect size reductions in RT (d = 0.74; 1.32; 1.40; 1.81). No significant changes to swimmers’ BTs were evident in either dive training intervention. The adolescent swimmers’ results were compared against six male elite swimmers (age 19.8 ± 1.0 years). The elite swimmers had significantly shorter BTs (p < 0.05) but no significant difference in RTs. Auditory stimulus dive training should be explored further as a mechanism for improving swimming start performance in elite swimmers who have pre-established optimal BTs.  相似文献   

4.
The aim of this study was to analyse the significance of various biomechanical parameters in swim start performance for the grab and track start techniques. To do so, structural equation models were analysed, incorporating measurements for the take-off phase, flight phase and entry phase. Forty-six elite German swimmers (18 female and 28 male; age: 20.1 ± 4.2 yrs; PB (100 m Freestyle): 53.6 ± 2.9 s) participated in the study. Their swim start performance was examined within a 25-m sprint test. Structural equation modelling was conducted in separate models for the block time, flight time and water time and in a combined model for swim start time. Our main finding was that swim start time is predominantly related to water time and determined to a lesser extent by block time and flight time. We conclude that more emphasis should be given to the water immersion behaviour and the gliding phase when analysing swim start performance. Furthermore, significant differences were found between the grab start and track techniques as regards the biomechanical parameters representing the take-off phase and water phase.  相似文献   

5.
This study aimed to assess the effects of post-activation potentiation in the strength related variables of a kick start. Thirteen competitive swimmers performed three kick starts after a standardized warm up (denoted USUAL) and another after inducing post-activation through five isotonic repetitions on an eccentric flywheel (denoted PAP). A T-test was used to quantify differences between USUAL and PAP warm up. The best trial of each subject achieved by natural conditions (denoted PEAK) was compared with data obtained after PAP. An instrumented starting block with independent triaxial force plates, collected the strength variables related with the impulse at take off. Improvements in the vertical components of force were observed after PAP compared with USUAL, meanwhile no differences were detected on the horizontal components of it. The velocity at take off was higher after PAP compared with USUAL (4.32 ± 0.88 vs 3.93 ± 0.60 m*s-1; p = 0.02). No differences in force or velocity were detected comparing PAP with PEAK (4.13 ± 0.62 m*s-1, p = 0.11). The PAP warm-up increased vertical force and it was transferred to a higher resultant velocity at take-off. This improvement would equal the best result possible obtained in natural conditions after some trials.  相似文献   

6.
FINA recently approved the backstroke ledge (Omega OBL2) to improve backstroke start performance in competition, but its performance has not been thoroughly evaluated. The purpose of this study was to compare the mechanics of starts performed with and without the OBL2. Ten high-level backstroke swimmers performed three starts with, and three starts without, the OBL2. A wall-mounted force plate measured the lower limb horizontal impulse, vertical impulse, take-off velocity and take-off angle. Entry distance, time to 10 m and start of hip and knee extension were recorded using video cameras. Starts performed with the OBL2 had a 0.13 s lower time to 10 m, 2.5% less variability in time to 10 m and 0.14 m greater head entry distance. The OBL2 provides a performance advantage by allowing an increased head entry distance rather than larger horizontal impulse on the wall. This may be due to the swimmers assuming different body positions during the start manoeuvre. Additional studies are needed to evaluate factors that contribute to improved performance when using the OBL2. Swimmers should train with the OBL2 and use it in competition to ensure optimal start performance.  相似文献   

7.
The swimming start is typically broken into three sub-phases; on-block, flight, and underwater phases. While overall start performance is highly important to elite swimming, the contribution of each phase and important technical components within each phase, particularly with the new kick-start technique, has not been established. The aim of this study was to identify technical factors associated with overall start performance, with a particular focus on the underwater phase. A number of parameters were calculated from 52 starts performed by elite freestyle and butterfly swimmers. These parameters were split into above-water and underwater groupings, before factor analysis was used to reduce parameter numbers for multiple regression. For the above-water phases, 81% of variance in start performance was accounted for by take-off horizontal velocity. For the underwater water phase, 96% of variance was accounted for with time underwater in descent, time underwater in ascent and time to 10 m. Therefore, developing greater take-off horizontal velocity and focussing on the underwater phase by finding the ideal trajectory will lead to improved start performance.  相似文献   

8.
This study investigated how manipulating first step width affects 3D external force production, centre of mass (CoM) motion and performance in athletic sprinting. Eight male and 2 female competitive sprinters (100m PB: 11.03 ± 0.36 s male and 11.6 ± 0.45 s female) performed 10 maximal effort block starts. External force and three-dimensional kinematics were recorded in both the block and first stance phases. Five trials were performed with the athletes performing their preferred technique (Skating) and five trials with the athletes running inside a 0.3 m lane (Narrow). By reducing step width from a mean of 0.31 ± 0.06 m (Skating) to 0.19 ± 0.03 m (Narrow), reductions were found between the two styles in medial block and medial 1st stance impulses, 1st stance anterior toe-off velocity and mediolateral motion of the CoM. No differences were found in block time, step length, stance time, average net resultant force vector, net anteroposterior impulse nor normalised external power. Step width correlated positively with medial impulse but not with braking nor net anteroposterior impulse. Despite less medially directed forces and less mediolateral motion of the CoM in the Narrow trials, no immediate improvement to performance was found by restricting step width.  相似文献   

9.
Abstract

Rowers sit on a seat that slides relative to the boat/ergometer. If a rower lifts him or herself from this sliding seat at any time, the seat will move away from under them and the rowing action is disrupted. From a mechanical perspective, it is clear that the need for the rower to remain in contact with the sliding seat at all times imposes position-dependent constraints on the forces exerted at the oar handle and the footstretcher. Here we investigate if the mechanical power output during rowing, which is strongly related to these forces, might be improved if the contact with the sliding seat was of no concern to the rower. In particular, we examine if elimination of these constraints by strapping the rower to the sliding seat leads to an increase in performance during the start on a standard rowing ergometer. Eleven well-trained female rowers performed 5-stroke starts in normal and strapped conditions. Handle force, vertical seat force, footstretcher force, and handle kinematics were recorded, from which mechanical power and work output were calculated. Most of the relevant mechanical variables differed significantly between the normal and strapped conditions. Most importantly, mechanical power output (averaged over the 5-stroke start) in the strapped condition was 12% higher than in the normal condition. We conclude that strapping a rower's pelvis to the sliding seat allows more vigorous execution of the stroke phases, resulting in a substantial improvement in performance during the start of ergometer rowing.  相似文献   

10.
An effective start enhances an athlete's chances of success in ski cross competitions. Accordingly, this study was designed to investigate the biomechanics of start techniques used by elite athletes and assess the influence of different start environments. Seven elite ski cross athletes performed starts indoors on a custom-built ramp; six of these also performed starts on an outdoor slope. Horizontal and vertical forces were measured by force transducers located in the handles of the start gate and a 12-camera motion capture system allowed monitoring of the sagittal knee, hip, shoulder, and elbow kinematics. The starting movement involved Pre, Pull, and Push phases. Significant differences between body sides were observed for peak vertical and resultant forces, resultant impulse, and peak angular velocity of the shoulder joint. Significantly lower peak vertical forces (44 N), higher resultant impulse (0.114 Ns/kg), and knee joint range of motion (12°) were observed indoors. Although movement in the ski cross start is generally symmetrical, asymmetric patterns of force were observed among the athletes. Two different movement strategies, i.e. pronounced hip extension or more accentuated elbow flexion, were utilised in the Pull phase. The patterns of force and movement during the indoor and outdoor starts were similar.  相似文献   

11.
Abstract

In this study, we used recently developed technology to determine the force–time profile of elite swimmers, which enabled coaches to make informed decisions on technique modifications. Eight elite male swimmers with a FINA (Federation Internationale de Natation) rank of 900+ completed five passive (streamline tow) and five net force (arms and leg swimming) trials. Three 50-Hz cameras were used to video each trial and were synchronized to the kinetic data output from a force-platform, upon which a motorized towing device was mounted. Passive and net force trials were completed at the participant's maximal front crawl swimming velocity. For the constant tow velocity, the net force profile was presented as a force–time graph, and the limitation of a constant velocity assumption was acknowledged. This allowed minimum and maximum net forces and arm symmetry to be identified. At a mean velocity of 1.92 ± 0.06 m · s?1, the mean passive drag for the swimmers was 80.3 ± 4.0 N, and the mean net force was 262.4 ± 33.4 N. The mean location in the stroke cycle for minimum and maximum net force production was at 45% (insweep phase) and 75% (upsweep phase) of the stroke, respectively. This force–time profile also identified any stroke asymmetry.  相似文献   

12.
13.
Abstract

Stroke-coordination and symmetry influence the force fluctuations within any net drag force profile. The aim of this study was to analyse elite (FINA points 938) backstroke swimmers stroke-coordination using an instantaneous net drag force and timing protocols using a symmetry index tool. Ten male and nine female elite backstroke swimmers completed three maximum speed trials and five maximum speed net drag force swimming trials. Net drag force was measured using an assisted motorised dynamometer device. Each trial was filmed using three genlocked 50 Hz cameras, synchronised to the net drag force output from the force-platform. This methodology enabled the comparison of stroke-coordination timing symmetry index to net drag force symmetry index. The timing symmetry index and net drag force symmetry index yielded different results, the timing reflects the stroke-coordination, whilst the force index identified the effectiveness of the stroke. The only variable that was significantly different when comparing left and right stroke patterns was the location of minimum net drag forces. Conversely, gender influenced the location of maximum net drag force. Relationship analysis identified that location of maximum net drag force production was the only variable to correlate with speed within this cohort. Backstroke arm coordination was minimally influenced by gender.  相似文献   

14.
In the past, studies and book recommendations on relay starts in swimming have been predominantly focused on the change-over time (COT) as a performance criterion. Aside from the circular backswing start with parallel foot placement, few studies have analysed differences in the take-off movement including step approaches as well. Although trends could be identified, the results remained still somewhat inconclusive. In contrast, no study has examined as has examined whether a reduction of COT in between wall contact of the income swimmer and the take-off of the outgoing swimmer is an optimal relay start strategy, as advocated by various swimming experts. Therefore, the purpose of this study was to compare two different relay start strategies: offensive strategy minimizing COT and conservative strategy to maximize horizontal peak force (HPF). In this regard, a learning intervention with 24 elite-level swimmers (12 females, 12 male) was conducted to compare both strategies regarding relay start time, HPF and COT. Subjects were randomly assigned to two feedback groups: COT versus HPF at take-off. The results of this study showed a clear advantage for HPF feedback for relay start performance measured by wall contact of the incoming swimmer and head passage at 7.5?m of the outgoing swimmer. In addition, similar reductions in COTs were found in both training groups. In conclusion, swimmers should focus on force production rather than minimizing COT. For the latter, deteriorating consequences for force production must be considered.  相似文献   

15.
Kinetic (3-D force plate), kinematic (videography) and temporal characteristics of backstroke turns by 20 male and 16 female swimmers were recorded to identify and describe key elements of backstroke turning performance. Data were recorded during a 50 m maximum effort swim in a 25 metre pool. A Pearson product moment correlation matrix revealed that the 5 m RTT was significantly correlated with anthropometric measures of height, mass, trochanteric height and age; kinetic measures of horizontal impulse and peak force; and kinematic measures of wall contact time and peak velocity. The stepwise multiple regression equation to predict 5 m RTT was: 19.6-0.75 trochanteric height-1.8 wall exit velocity-0.03 peak vertical force. Four key factors were identified from a principle components factor analysis--anthropometry and force, post-turn velocity, force preparation and rotational skills. Implications from the findings were that age-group backstrokers should 'hit the wall hard' with relatively extended legs to reduce swim distance and push-off deceleration; use minimal wall contact time, and maximise forces to develop high horizontal velocities in a streamlined position.  相似文献   

16.
Foot and hand set-up position effects were analysed on backstroke start performance. Ten swimmers randomly completed 27 starts grouped in trials (n = 3) of each variation, changing foot (totally immersed, partially and totally emerged) and hand (lowest, highest horizontal and vertical) positioning. Fifteen cameras recorded kinematics, and four force plates collected hands and feet kinetics. Standardised mean difference and 95% confidence intervals were used. Variations with feet immersed have shown lower vertical centre of mass (CM) set-up position (0.16 m), vertical impulse exerted at the hands, horizontal and vertical impulse exerted at the feet (0.28, 0.41, 0.16 N/BW.s, respectively) than feet emerged with hands horizontal and vertically positioned. Most variations with feet partially emerged exhibited higher and lesser vertical impulse exerted at hands than feet immersed and emerged (e.g. vertical handgrip, 0.13, 0.15 N/BW.s, respectively). Variation with feet emerged and hands on the lowest horizontal handgrip depicted shorter horizontal (0.23, 0.26 m) and vertical CM positioning at flight (0.16, 0.15 m) than the highest horizontal and vertical handgrip, respectively. Start variations have not affected 15-m time. Variations with feet partially or totally emerged depicted advantages, but focusing on the entry and underwater biomechanics is relevant for a shorter start time.  相似文献   

17.
Abstract

Cerebral palsy is known to generally limit range of motion and force producing capability during movement. It also limits sprint performance, but the exact mechanisms underpinning this are not well known. One elite male T36 multiple-Paralympic sprint medallist (T36) and 16 well-trained able-bodied (AB) sprinters each performed 5–6 maximal sprints from starting blocks. Whole-body kinematics (250 Hz) in the block phase and first two steps, and synchronised external forces (1,000 Hz) in the first stance phase after block exit were combined to quantify lower limb joint kinetics. Sprint performance (normalised average horizontal external power in the first stance after block exit) was lower in T36 compared to AB. T36 had lower extensor range of motion and peak extensor angular velocity at all lower limb joints in the first stance after block exit. Positive work produced at the knee and hip joints in the first stance was lower in T36 than AB, and the ratio of positive:negative ankle work produced was lower in T36 than AB. These novel results directly demonstrate the manner in which cerebral palsy limits performance in a competition-specific sprint acceleration movement, thereby improving understanding of the factors that may limit performance in elite sprinters with cerebral palsy.  相似文献   

18.
Abstract

The age-related progression of elite athletes to their career-best performances can provide benchmarks for talent development. The purpose of this study was to model career performance trajectories of Olympic swimmers to develop these benchmarks. We searched the Web for annual best times of swimmers who were top 16 in pool events at the 2008 or 2012 Olympics, from each swimmer's earliest available competitive performance through to 2012. There were 6959 times in the 13 events for each sex, for 683 swimmers, with 10 ± 3 performances per swimmer (mean ± s). Progression to peak performance was tracked with individual quadratic trajectories derived using a mixed linear model that included adjustments for better performance in Olympic years and for the use of full-body polyurethane swimsuits in 2009. Analysis of residuals revealed appropriate fit of quadratic trends to the data. The trajectories provided estimates of age of peak performance and the duration of the age window of trivial improvement and decline around the peak. Men achieved peak performance later than women (24.2 ± 2.1 vs. 22.5 ± 2.4 years), while peak performance occurred at later ages for the shorter distances for both sexes (~1.5–2.0 years between sprint and distance-event groups). Men and women had a similar duration in the peak-performance window (2.6 ± 1.5 years) and similar progressions to peak performance over four years (2.4 ± 1.2%) and eight years (9.5 ± 4.8%). These data provide performance targets for swimmers aiming to achieve elite-level performance.  相似文献   

19.
Abstract

The purpose of this study was to examine whether split step (small hop before step) would be more beneficial than no-split condition in simulated tennis response situation. In addition, it was studied if movement time of the response is related to separately measured force production capabilities and reflex sensitivity of the players. Nine skilled male tennis players participated in this study. Subjects stood on a force plate and reacted to a light signal and moved to appointed direction as fast as possible. With split step the participants were 13.1% faster (P <0.05) than without split step from the start to the distal end of the so called close range movement continuum (2.70 m). This was mainly explained by 43.6% faster time (P <0.05) from the signal to the onset of force production. Greater vertical forces were observed with split step: 15.7% greater F(z) mean force (P <0.05), 60.0% greater F(z) peak force (P<0.01). In split step both mean (r= ? 0.813, P <0.01) and peak (r=?0.765, P <0.05) vertical forces (Fz) correlated negatively with the time from the onset of the force production to the photocell. With split step higher EMGs were observed in muscles responsible for ankle joint movement indicating that different strategies were used. Due to the split step the players were able to start the movement faster which mostly explains the advantages over the no-split step condition. Split step condition may also benefit from stretch shortening type of muscle action.  相似文献   

20.
In this study, we used recently developed technology to determine the force-time profile of elite swimmers, which enabled coaches to make informed decisions on technique modifications. Eight elite male swimmers with a FINA (Federation Internationale de Natation) rank of 900+ completed five passive (streamline tow) and five net force (arms and leg swimming) trials. Three 50-Hz cameras were used to video each trial and were synchronized to the kinetic data output from a force-platform, upon which a motorized towing device was mounted. Passive and net force trials were completed at the participant's maximal front crawl swimming velocity. For the constant tow velocity, the net force profile was presented as a force-time graph, and the limitation of a constant velocity assumption was acknowledged. This allowed minimum and maximum net forces and arm symmetry to be identified. At a mean velocity of 1.92+0.06 m s?1, the mean passive drag for the swimmers was 80.3+4.0 N, and the mean net force was 262.4+33.4 N. The mean location in the stroke cycle for minimum and maximum net force production was at 45% (insweep phase) and 75% (upsweep phase) of the stroke, respectively. This force-time profile also identified any stroke asymmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号