首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The efficacy of video feedback for learning the golf swing   总被引:1,自引:1,他引:0  
This study was designed to examine the efficacy of video instruction relative to that of verbal and self-guided instruction. Before training, 30 golfers were assigned at random to one of three groups: video, verbal or self-guided instruction. Video instruction was defined as a practice session in which the teacher was aided by the use of video. Verbal instruction was defined as practising with the teacher providing verbal feedback. Self-guided practice was defined as practising without the aid of a teacher. The participants had a pre-test, four 90 min practice sessions, an immediate post-test and a 2 week delayed post-test. During the pre-test and post-tests, all participants were required to strike 15 golf balls, with a 7-iron, from an artificial turf mat for distance and accuracy. The results showed that all groups were equal on the pre-test. On the first post-test, the two instruction groups performed worse than the self-guided group. However, on the second post-test, the two instruction groups performed better than the self-guided group, with the video group performing best. We interpret these results to mean that video analysis is an effective means of practice, but that the positive effects may take some time to develop.  相似文献   

2.
Previous planar models of the downswing in golf have suggested that upper limb segments (left shoulder girdle and left arm) move in a consistent fixed plane and that the clubhead also moves only in this plane. This study sought to examine these assumptions. Three-dimensional kinematic analysis of seven right-handed golfers of various abilities (handicap 0?–?15) was used to define a plane (named the left-arm plane) containing the 7th cervical vertebra, left shoulder and left wrist. We found that the angles of this plane to the reference horizontal z axis and target line axis (parallel to the reference x axis) were not consistent. The angle to the horizontal z axis varied from a mean of 133° (s = 1°) at the start of the downswing to 102° (s = 4°) at impact, suggesting a “steepening” of the left-arm plane. The angle of the plane to the target line changed from ??9° (s = 16°) to 5° (s = 15°) during the same period, showing anticlockwise (from above) rotation, although there was large inter-individual variation. The distance of the clubhead from the left-arm plane was 0.019?m (s = 0.280?m) at the start at the downswing and 0.291?m (s = 0.077?m) at impact, showing that the clubhead did not lie in the same plane as the body segments. We conclude that the left arm and shoulder girdle do not move in a consistent plane throughout the downswing, and that the clubhead does not move in this plane. Previous models of the downswing in golf may therefore be incorrect, and more complex (but realistic) simulations should be performed.  相似文献   

3.
Segmental sequencing of kinetic energy in a computer-simulated golf swing   总被引:1,自引:1,他引:0  
The concept of the transfer of kinetic energy (KE) sequentially through the human body from proximal to distal segments is an influential concept in biomechanics literature. The present study develops this area of research through investigation of segmental sequencing of the transfer of KE by means of computer simulation. Using a musculoskeletal computer model previously developed by the authors, driven using three-dimensional kinematic data from a single elite male golfer, combined inverse and forward dynamics analyses enabled derivation of KE. Rigid body segments of torso, hips, arms and clubhead were examined in line with previous literature. Using this method a driver swing was compared to a 7 iron swing. Findings showed a high level of correlation between driver and iron peak KE and timing of peak KE relative to impact. This seems to indicate equivalent trunk and arms linear velocity, thus force applied, for an iron shot and a driver shot. There were highly significant differences between KE output for body segments for both clubs. In addition, peak KE magnitudes increased sequentially from proximal to distal segments during swing simulations for both the driver and 7 iron. This supports the principle of the summation of speed. However, timing of peak KE was not sequential from proximal to distal segments, nor did segments peak simultaneously. Rather, arms peaked first, followed by hips, torso and club. This seems to indicate a subjective optimal coordination of sequencing.
Ian C. KennyEmail:
  相似文献   

4.
Since clubface orientation at impact affects ball direction and ball spin, the ability to control clubface orientation is one of the most important skills for golfers. This study presents a new method to describe clubface orientation as a function of the clubshaft motions (i.e., swing plane orientation, clubshaft angle in the swing plane, and clubshaft rolling angle) during a golf swing and investigates the relationships between the clubshaft motions and clubface orientation at impact. The club motion data of driver shots were collected from eight skilled golfers using a three-dimensional motion capture system. The degrees of influence of the clubshaft motions on the clubface orientation were investigated using sensitivity analysis. The sensitivity analysis revealed that the swing plane horizontal angle affected the clubface horizontal angle to an extent of 100%, that the clubshaft angle in the swing plane affected both the clubface vertical and horizontal angles to extents of 74 and 68%, respectively, and that the clubshaft rolling angle affected both the clubface vertical and horizontal angles to extents of -67 and 75%, respectively. Since the method presented here relates clubface orientation to clubshaft motions, it is useful for understanding the clubface control of a golfer.  相似文献   

5.
ABSTRACT

The research aimed to evaluate the effects of an intervention aimed at altering pressure towards the medial aspect of the foot relating to stability mechanisms associated with the golf swing. We hypothesised that by altering the position of the foot pressure, the lower body stabilisation would improve which in turn would enhance weight distribution and underpinning lower body joint kinematics. Eight professional golf association (PGA) golf coaches performed five golf swings, recorded using a nine-camera motion analysis system synchronised with two force platforms. Following verbal intervention, they performed further five swings. One participant returned following a one-year intervention programme and performed five additional golf swings to provide a longitudinal case study analysis. Golf performance was unchanged evidenced by the velocity and angle of the club at ball impact (BI), although the one-year intervention significantly changed the percentage of weight experienced at each foot in the final 9% of downswing, which provided an even weight distribution at BI. This is a highly relevant finding as it indicates that the foot centre of pressure was central to the base of support and in-line with the centre of mass (CoM), indicating significantly increased stability when the CoM is near maximal acceleration.  相似文献   

6.
Abstract

Previous studies on the kinematics of the golf swing have mainly focused on group analysis of male golfers of a wide ability range. In the present study, we investigated gross body kinematics using a novel method of analysis for golf research for a group of low handicap female golfers to provide an understanding of their swing mechanics in relation to performance. Data were collected for the drive swings of 16 golfers using a 12-camera three-dimensional motion capture system and a stereoscopic launch monitor. Analysis of covariance identified three covariates (increased pelvis–thorax differential at the top of the backswing, increased pelvis translation during the backswing, and a decrease in absolute backswing time) as determinants of the variance in clubhead speed (adjusted r 2 = 0.965, P < 0.05). A significant correlation was found between left-hand grip strength and clubhead speed (r = 0.54, P < 0.05) and between handicap and clubhead speed (r = ?0.612, P < 0.05). Flexibility measures showed some correlation with clubhead speed; both sitting flexibility tests gave positive correlations (clockwise: r = 0.522, P < 0.05; counterclockwise: r = 0.711, P < 0.01). The results suggest that there is no common driver swing technique for optimal performance in low handicap female golfers, and therefore consideration should be given to individual swing characteristics in future studies.  相似文献   

7.
The aim of this study was to describe and compare the EMG patterns of select lower limb muscles throughout the golf swing, performed with three different clubs, in non-elite middle-aged players. Fourteen golfers performed eight swings each using, in random order, a pitching wedge, 7-iron and 4-iron. Surface electromyography (EMG) was recorded bilaterally from lower limb muscles: tibialis anterior, peroneus longus, gastrocnemius medialis, gastrocnemius lateralis, biceps femoris, semitendinosus, gluteus maximus, vastus medialis, rectus femoris and vastus lateralis. Three-dimensional high-speed video analysis was used to determine the golf swing phases. Results showed that, in average handicap golfers, the highest muscle activation levels occurred during the Forward Swing Phase, with the right semitendinosus and the right biceps femoris muscles producing the highest mean activation levels relative to maximal electromyography (70–76% and 68–73% EMGMAX, respectively). Significant differences between the pitching wedge and the 4-iron club were found in the activation level of the left semitendinosus, right tibialis anterior, right peroneus longus, right vastus medialis, right rectus femuris and right gastrocnemius muscles. The lower limb muscles showed, in most cases and phases, higher mean values of activation on electromyography when golfers performed shots with a 4-iron club.  相似文献   

8.
In this paper, we report the discrete frequencies at which golf balls can vibrate, the mode patterns of these vibrations and how these modes can be excited. There are two broad classes of modes: those that radiate sound waves and those that do not. Both silent and acoustic modes are excited by tangential (i.e. spin-producing) impact forces; only acoustic modes are excited by radial impact forces. Exact analytical results for a homogeneous ball core are compared with finite element numerical results for both a core and a model two-piece ball. Correspondences are readily established for the important low-frequency modes, and the good agreement suggests the validity of these results for real golf balls. The results potentially provide the basis for a rapid, simple and non-destructive method of measuring the effective high-frequency elastic shear modulae of balls (and ball cores) as well as a method for 'tuning' the performance of balls for specific clubs. Some of these aspects are explored further in our companion paper in this issue.  相似文献   

9.
ABSTRACT

Full three-dimensional movements and external moments in golfers’ knees and the possible involvement in injuries have not been evaluated using motion capture at high sample frequencies. This study measured joint angles and external moments around the three anatomical axes in both knees of 10 professional golfers performing golf drives whilst standing on two force plates in a motion capture laboratory. Significant differences were found in the knee joint moments between the lead and trail limbs for the peak values and throughout all stages during the swing phase. A significantly higher net abduction moment impulse was seen in the trail limb compared with the lead limb (?0.518 vs. ?0.135 Nms.kg?1), indicating greater loading over the whole swing, which could contribute to knee lateral compartment or anterior cruciate ligament injuries. A significant correlation (= ?0.85) between clubhead speed at ball contact and maximum joint moment was found, with the largest correlations being found for joint moments at the top of the backswing event and at the end of the follow-through. Therefore, although knee moments can contribute to high clubhead speeds, the large moments and impulses suggest that they may also contribute to chronic knee injuries or exacerbate existing conditions.  相似文献   

10.
In this paper, we present results on the measurement and analysis of the sound that is produced by the sharp impact loading of a golf ball by a flat massive object (e.g. the face of a golf club). We discuss: (a) the motivation for such a study; (b) some necessary background information on how golf balls vibrate; (c) the techniques used to acquire and analyse the data; and (d) an analysis of the sound made by dropping balls on a smooth, massive concrete target surface. These results establish a simple method for rapid and non-destructive measurement of the effective high-frequency elastic shear moduli of balls and ball cores.  相似文献   

11.
Factors that affect boat speed are important determinants of rowing performance and should form the basis of feedback to rowers and their coaches. Biomechanical analysis of rowing has led to variables that are causally linked to boat speed. With modern technology, these variables can be measured and feedback can be presented instantaneously on-water, or be presented simultaneously with video after the event. This paper demonstrates the links between the criterion of success in rowing, the time for completing 2000 m and the forces acting on the boat, and describes an instrumentation system for providing feedback of these variables to rowers and coaches. These feedback techniques have been used with rowers from national to Olympic competition standard. Aspects of technique have been linked to the determinants of boat speed and several examples are presented here. The motor learning literature supports the effectiveness of kinetic information feedback for the improvement of motor skill and provides a relevant conceptual framework for the improvement of rowing performance. However, although rowers and their coaches value this feedback, further research must be undertaken to establish a sound basis for comparing the effectiveness of such feedback compared with traditional styles, such as verbal feedback of performance.  相似文献   

12.
The use of multi-segment trunk models to investigate the crunch factor in golf may be warranted. The first aim of the study was to investigate the relationship between the trunk and lower trunk for crunch factor-related variables (trunk lateral bending and trunk axial rotation velocity). The second aim was to determine the level of association between crunch factor-related variables with swing (clubhead velocity) and launch (launch angle). Thirty-five high-level amateur male golfers (Mean ± SD: age = 23.8 ± 2.1 years, registered golfing handicap = 5 ± 1.9) without low back pain had kinematic data collected from their golf swing using a 10-camera motion analysis system operating at 500 Hz. Clubhead velocity and launch angle were collected using a validated real-time launch monitor. A positive relationship was found between the trunk and lower trunk for axial rotation velocity (r(35) = .47, < .01). Cross-correlation analysis revealed a strong coupling relationship for the crunch factor (R2 = 0.98) between the trunk and lower trunk. Using generalised linear model analysis, it was evident that faster clubhead velocities and lower launch angles of the golf ball were related to reduced lateral bending of the lower trunk.  相似文献   

13.
Golf requires proper dynamic balance to accurately control the club head through a harmonious coordination of each human segment and joint. In this study, we evaluated the ability for dynamic balance during a golf swing by using the centre of mass (COM)–centre of pressure (COP) inclination variables. Twelve professional, 13 amateur and 10 novice golfers participated in this study. Six infrared cameras, two force platforms and SB-Clinic software were used to measure the net COM and COP trajectories. In order to evaluate dynamic balance ability, the COM–COP inclination angle, COM–COP inclination angular velocity and normalised COM–COP inclination angular jerk were used. Professional golfer group revealed a smaller COM–COP inclination angle and angular velocity than novice golfer group in the lead/trail direction (P < 0.01). In the normalised COM–COP inclination angular jerk, the professional golfer group showed a lower value than the other two groups in all directions. Professional golfers tend to exhibit improved dynamic balance, and this can be attributed to the neuromusculoskeletal system that maintains balance with proper postural control. This study has the potential to allow for an evaluation of the dynamic balance mechanism and will provide useful basic information for swing training and prevention of golf injuries.  相似文献   

14.
The aim of this study was to determine how shaft length affects golf driving performance. A range of drivers with lengths between 1.168 m and 1.270 m, representing lengths close to the 1.219 m limit imposed by R&;A Rules Limited (2008 R&;A Rules Limited. 2008. Rules of golf, St. Andrews: R&;A Rules Limited, The Royal and Ancient Golf Club of St. Andrews.  [Google Scholar]), were assembled and evaluated. Clubhead and ball launch conditions and drive distance and accuracy were determined for seven category 1 golfers (handicaps 0.21 ± 2.41) who performed shots on a purpose-built practice hole. As shaft length increased from 1.168 m to 1.270 m, initial ball velocity increased (+1.8 m/s, P < 0.01). Ball carry (+4.3 m, P = 0.152) also increased, although not significantly so. Furthermore, as shaft length increased, for all club comparisons there was no decrease in accuracy. Ball launch conditions of spin components and launch angle remained unaffected by shaft length. Launch angle increased (0.8°, F = 1.074, P = 0.362) as driver shaft length increased. Our results show that clubhead and ball velocity together with ball carry tended to increase with no loss of accuracy.  相似文献   

15.
Abstract

The influence of impact sound in putting on players' perceptions of “feel” is explored in this paper. Tests were conducted to investigate the impact sound characteristics of five different ball types using two different putter types. The first test studied the impact sound of purely the ball, while the second test investigated the influence of putter construction and impact location on impact sound for the different ball types. Trends were found between sound spectra peaks in the 2 – 4 kHz range and the compression values of the balls. In addition, frequency content was more dependent on putter type and impact location than on ball construction in the 0 – 2 kHz range. The final test employed a paired comparison technique to investigate players' perceptions of sharpness and loudness of impact sound, ball speed from the clubface and ball hardness. Relationships between the subjective data and the sound characteristics of the balls were then examined. It was found that the ball the players' perceived to have the sharpest and loudest sound, to feel the hardest and to come off the clubface the quickest also had the largest calculated values of loudness and sharpness and had a spectral peak at a higher frequency than the other balls.  相似文献   

16.
Tournament preparation in golf is used by players to increase course knowledge, develop strategy, optimise playing conditions and facilitate self-regulation. It is not known whether specific behaviours in tournament preparation should be given priority in education and practice at different stages of competition. This study aimed to achieve consensus on the importance of specific tournament preparation behaviours or “items” to players of five competitive levels. A two-round Delphi study was used, including an expert panel of 36 coaches, high-performance staff, players and academics. Participants were asked to score the relative importance of 48 items to players using a 5-point Likert-type scale. For an item to achieve consensus, 67% agreement was required in two adjacent score categories. Consensus was reached for 46 items and these were used to develop a ranked framework for each competitive level. The developed framework provides consensus-based guidelines of the behaviours that are perceived as important in tournament preparation. This framework could be used by national sport organisations to guide the development of more comprehensive learning environments for players and coaches. It could also direct future studies examining the critical behaviours for golfers across different competitive levels.  相似文献   

17.
In golf, unlike most other sports, individual performance is not the result of direct interactions between players. Instead decision-making and performance is influenced by numerous constraining factors affecting each shot. This study looked at the performance of PGA TOUR golfers in 2011 in terms of stability and variability on a shot-by-shot basis. Stability and variability were assessed using Recurrence Quantification Analysis (RQA) and standard deviation, respectively. About 10% of all shots comprised short stable phases of performance (3.7 ± 1.1 shots per stable phase). Stable phases tended to consist of shots of typical performance, rather than poor or exceptional shots; this finding was consistent for all shot categories. Overall, stability measures were not correlated with tournament performance. Variability across all shots was not related to tournament performance; however, variability in tee shots and short approach shots was higher than for other shot categories. Furthermore, tee shot variability was related to tournament standing: decreased variability was associated with better tournament ranking. The findings in this study showed that PGA TOUR golf performance is chaotic. Further research on amateur golf performance is required to determine whether the structure of amateur golf performance is universal.  相似文献   

18.
It is believed that increasing the X-factor (movement of the shoulders relative to the hips) during the golf swing can increase ball velocity at impact. Increasing the X-factor may also increase the risk of low back pain. The aim of this study was to provide recommendations for the three-dimensional (3D) measurement of the X-factor and lower trunk movement during the golf swing. This three-part validation study involved; (1) developing and validating models and related algorithms (2) comparing 3D data obtained during static positions representative of the golf swing to visual estimates and (3) comparing 3D data obtained during dynamic golf swings to images gained from high-speed video. Of particular interest were issues related to sequence dependency. After models and algorithms were validated, results from parts two and three of the study supported the conclusion that a lateral bending/flexion-extension/axial rotation (ZYX) order of rotation was deemed to be the most suitable Cardanic sequence to use in the assessment of the X-factor and lower trunk movement in the golf swing. The findings of this study have relevance for further research examining the X-factor its relationship to club head speed and lower trunk movement and low back pain in golf.  相似文献   

19.
The purpose of this study was to investigate the influence of shaft stiffness on grip and clubhead kinematics. Two driver shafts with disparate levels of stiffness, but very similar inertial properties, were tested by 33 golfers representing a range of abilities. Shaft deflection data as well as grip and clubhead kinematics were collected from 14 swings, with each shaft, for each golfer using an optical motion capture system. The more flexible shaft (R-Flex) demonstrated a higher contribution to clubhead speed from shaft deflection dynamics (P < .001), but was also associated with significantly less grip angular velocity at impact (P = .001), resulting in no significant difference in clubhead speed (P = .14). However, at the individual level, half of the participants demonstrated a significant difference in clubhead speed between shafts. The more flexible shaft was also associated with significantly different magnitudes of head rotation relative to the grip. More specifically, both bend loft (P < .001) and bend lie (P < .001) were greater for the R-Flex shaft, while bend close (P = .017) was greater for the stiffer (X-Flex) shaft. However, changes in grip orientation resulted in no significant differences in face orientation, between the shafts, at impact.  相似文献   

20.
A number of recent studies have measured the extent and timing of segment rotation during the golf swing. A promising technique, instantaneous screw axis (ISA) theory, could provide a better expression of segment rotation. In Part 1 of this two-part study, the objectives are to identify the ISA of the pelvis, shoulders and left arm during the downswing, compute segment angular velocity relative to that segment’s ISA and verify that ISA theory is a valid tool to analyse segment rotation during the golf swing. Results indicate that for all subjects, at least 71% of marker velocity is a result of rotation about their respective ISA, when averaging results over the duration of the downswing, confirming that motion is primarily rotational. Furthermore, ISA position and orientation of each segment approaches, on average, the expected gross axis of rotation, confirming that motion about the ISA is representative of joint motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号