首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has previously been shown that the metabolic acidaemia induced by a continuous warm-up at the 'lactate threshold' is associated with a reduced accumulated oxygen deficit and decreased supramaximal performance. The aim of this study was to determine if an intermittent, high-intensity warm-up could increase oxygen uptake (VO2) without reducing the accumulated oxygen deficit, and thus improve supramaximal performance. Seven male 500 m kayak paddlers, who had represented their state, volunteered for this study. Each performed a graded exercise test to determine VO2max and threshold parameters. On subsequent days and in a random, counterbalanced order, the participants then performed a continuous or intermittent, high-intensity warm-up followed by a 2 min, all-out kayak ergometer test. The continuous warm-up consisted of 15 min of exercise at approximately 65% VO2max. The intermittent, high-intensity warm-up was similar, except that the last 5 min was replaced with five 10 s sprints at 200% VO2max, separated by 50 s of recovery at approximately 55% VO2max. Significantly greater (P < 0.05) peak power (intermittent vs continuous: 629 +/- 199 vs 601 +/- 204 W) and average power (intermittent vs continuous: 328 +/- 39.0 vs 321 +/- 42.4 W) were recorded after the intermittent warm-up. There was no significant difference between conditions for peak VO2, total VO2 or the accumulated oxygen deficit. The results of this study indicate that 2 min all-out kayak ergometer performance is significantly better after an intermittent rather than a continuous warm-up.  相似文献   

2.
The purpose of this study was to investigate the use of a single 3-min all-out maximal effort to estimate anaerobic capacity (AC) through the lactate and excess post-exercise oxygen consumption (EPOC) response methods (AC[La?]+EPOCfast) on a cycle ergometer. Eleven physically active men (age?=?28.1?±?4.0?yrs, height?=?175.1?±?4.2?cm, body mass?=?74.8?±?11.9?kg and ?O2max?=?40.7?±?7.3?mL?kg?1?min?1), participated in the study and performed: i) five submaximal efforts, ii) a supramaximal effort at 115% of intensity of ?O2max, and iii) a 3-min all-out maximal effort. Anaerobic capacity was estimated using the supramaximal effort through conventional maximal accumulated oxygen deficit (MAOD) and also through the sum of oxygen equivalents from the glycolytic (fast component of excess post-exercise oxygen consumption) and phosphagen pathways (blood lactate accumulation) (AC[La?]+EPOCfast), while during the 3-min all-out maximal effort the anaerobic capacity was estimated using the AC[La?]+EPOCfast procedure. There were no significant differences between the three methods (p?>?0.05). Additionally, the anaerobic capacity estimated during the 3-min all-out effort was significantly correlated with the MAOD (r?=?0.74; p?=?0.009) and AC[La?]+EPOCfast methods (r?=?0.65; p?=?0.029). Therefore, it is possible to conclude that the 3-min all-out effort is valid to estimate anaerobic capacity in physically active men during a single cycle ergometer effort.  相似文献   

3.
On a kayak ergometer, an accurate simulation of the athlete-paddle-kayak system kinematics is essential for analysing the relationship between technique and performance. The purpose of this study was to establish a strong relationship between performances on flatwater and performances on an ergometer by means of propulsive force measurement and drag models. Two trials were performed by 12 kayakers in which they were first timed over 250 m of flatwater kayaking (the reference test) and were then asked to perform a trial of the same duration on the ergometer with the same perceived physical exertion. Three techniques for measuring propulsive force and three drag models generated nine combinations, which were all evaluated for their ability to estimate kayak velocity. For each combination, the distance covered by the athlete on the ergometer was simulated. A kayakers’ ergometer ranking was based on the average velocity in the ergometer trial. Both distance and ranking were compared to the on-water results. The simulation with the best combination of force measurement and drag model gave an accurate estimate of distance (253 ± 10.5 vs. 250 m) and ranking compared to the reference test.  相似文献   

4.
最大累积氧亏(MAOD)是目前认为有效的、无损伤性的无氧能力间接测定方法,其测试过程受诸多因素的影响,文章介绍了MAOD的检测方法并从超极量运动持续时间、ETED的确立等方面对其检测过程中的主要影响因素作一简要回顾。  相似文献   

5.
The aim of this study was to determine the influence of type of warm-up on metabolism and performance during high-intensity exercise. Eight males performed 30 s of intense exercise at 120% of their maximal power output followed, 1 min later, by a performance cycle to exhaustion, again at 120% of maximal power output. Exercise was preceded by active, passive or no warm-up (control). Muscle temperature, immediately before exercise, was significantly elevated after active and passive warm-ups compared to the control condition (36.9 +/- 0.18 degrees C, 36.8 +/- 0.18 degrees C and 33.6 +/- 0.25 degrees C respectively; mean +/- sx) (P< 0.05). Total oxygen consumption during the 30 s exercise bout was significantly greater in the active and passive warm-up trials than in the control trial (1017 +/- 22, 943 +/- 53 and 838 +/- 45 ml O2 respectively). Active warm-up resulted in a blunted blood lactate response during high-intensity exercise compared to the passive and control trials (change = 5.53 +/- 0.52, 8.09 +/- 0.57 and 7.90 +/- 0.38 mmol x l(-1) respectively) (P < 0.05). There was no difference in exercise time to exhaustion between the active, passive and control trials (43.9 +/- 4.1, 48.3 +/- 2.7 and 46.9 +/- 6.2 s respectively) (P= 0.69). These results indicate that, although the mechanism by which muscle temperature is elevated influences certain metabolic responses during subsequent high-intensity exercise, cycling performance is not significantly affected.  相似文献   

6.
The aim of this study was to determine the influence of type of warm-up on metabolism and performance during high-intensity exercise. Eight males performed 30 s of intense exercise at 120% of their maximal power output followed, 1 min later, by a performance cycle to exhaustion, again at 120% of maximal power output. Exercise was preceded by active, passive or no warm-up (control). Muscle temperature, immediately before exercise, was significantly elevated after active and passive warm-ups compared to the control condition (36.9 - 0.18°C, 36.8 - 0.18°C and 33.6 - 0.25°C respectively; mean - sx ) ( P ? 0.05). Total oxygen consumption during the 30 s exercise bout was significantly greater in the active and passive warm-up trials than in the control trial (1017 - 22, 943 - 53 and 838 - 45 ml O 2 respectively). Active warm-up resulted in a blunted blood lactate response during high-intensity exercise compared to the passive and control trials (change = 5.53 - 0.52, 8.09 - 0.57 and 7.90 - 0.38 mmol· l -1 respectively) ( P ? 0.05). There was no difference in exercise time to exhaustion between the active, passive and control trials (43.9 - 4.1, 48.3 - 2.7 and 46.9 - 6.2 s respectively) ( P = 0.69). These results indicate that, although the mechanism by which muscle temperature is elevated influences certain metabolic responses during subsequent high-intensity exercise, cycling performance is not significantly affected.  相似文献   

7.
It is unknown whether a passive warm-up or an active warm-up performed at an intensity based on lactate thresholds could improve prolonged intermittent-sprint performance either in thermoneutral or hot environmental conditions. To investigate this issue, 11 male athletes performed three trials that consisted of 80 min of intermittent-sprinting performed on a cycle ergometer, preceded by either an active or a passive warm-up. Active warm-up and intermittent-sprint performance were performed in both hot and thermoneutral environmental conditions, while passive warm-up and intermittent-sprint performance were performed in hot conditions only. First sprint performance was also assessed. Results showed no significant interaction effects between any of the trials for total work (J · kg(-1)), work decrement, and power decrement (P = 0.10, P = 0.42, P = 0.10, respectively). While there were no significant differences between trials for work done for first sprint performance (P = 0.22), peak power was significantly higher after passive warm-up compared with active warm-up performed in either thermoneutral (P = 0.03) or in hot conditions (P = 0.02). Results suggest that the main benefits of warm-up for first sprint performance are derived from temperature-related effects. Active warm-up did not impair prolonged intermittent-sprint performance in the heat compared with thermoneutral conditions.  相似文献   

8.
The pre-event warm-up or “priming” routine for optimising cycling performance is not well-defined or uniform to a specific event. We aimed to determine the effects of varying the intensity of priming on 3 km cycling performance. Ten endurance-trained male cyclists completed four 3 km time-trials (TT) on four separate occasions, each preceded by a different priming strategy including “self-selected” priming and three intermittent priming strategies incorporating 10 min of constant-load cycling followed by 5 × 10 s bouts of varying relative intensity (100% and 150% of peak aerobic power, Wpeak, and all-out priming). The self-selected priming trial (379 ± 44 W) resulted in similar mean power during the 3 km TT to intermittent priming at 100% (376 ± 45 W; ?0.7%; unclear) and 150% (374 ± 48 W; ?1.5%, unclear) of Wpeak, but significantly greater than all-out priming (357 ± 45 W; ?5.8%, almost certainly harmful). Differences between intermittent and self-selected priming existed with regards to heart rate (6.2% to 11.5%), blood lactate (?22.9% to 125%) and VO2 kinetics (?22.9% to 8.2%), but these were not related to performance outcomes. In conclusion, prescribed intermittent priming strategies varying in intensity did not substantially improve 3 km TT performance compared to self-selected priming.  相似文献   

9.
Many physically active individuals have undertaken intermittent fasting to reduce their daily caloric intake. However, abstaining from meals for a specific length of time may lead to the acute disturbance of highly carbohydrate-dependent exercise performance. The purpose of this study was to observe the effect of 10 days of intermittent fasting on high-intensity type exercises, Wingate anaerobic (WT) and prolonged high-intensity time-to-exhaustion (HIT) cycling test. Twenty participants were randomised into an intermittent fasting (FAS) and a control group (CON). One day after baseline data collection on Day-0 where participants consumed their recommended daily caloric intake (FAS?=?2500?±?143?kcal?day?1; CON?=?2492?±?20?kcal?day?1) served over a course of five meals, the FAS group consumed only four meals where 40% was restricted by the omission of lunch (FAS?=?1500?±?55?kcal?day?1). This diet was then continued for 10 days. Data on exercise performance and other dependent variables were collected on Day-2, -4, -6, -8 and -10. A reduction in WT power in the FAS group was observed on Day-2 (821.74?±?66.07?W) compared to Day-0 (847.63?±?95.94?W) with a moderate effect size (p?p?p?相似文献   

10.
We tested the hypothesis that work-matched supramaximal intermittent warm-up improves final-sprint power output to a greater degree than submaximal constant-intensity warm-up during the last 30?s of a 120-s supramaximal exercise simulating the final sprint during sports events lasting approximately 2?min. Ten male middle-distance runners performed a 120-s supramaximal cycling exercise consisting of 90?s of constant-workload cycling at a workload corresponding to 110% maximal oxygen uptake (VO2max) followed by 30?s of maximal-effort cycling. This exercise was preceded by 1) no warm-up (Control), 2) a constant-workload cycling warm-up at a workload of 60%VO2max for 6?min and 40?s, or 3) a supramaximal intermittent cycling warm-up for 6?min and 40?s consisting of 5 sets of 65?s of cycling at a workload of 46%VO2max?+?15?s of supramaximal cycling at a workload of 120%VO2max. By design, total work was matched between the two warm-up conditions. Supramaximal intermittent and submaximal constant-workload warm-ups similarly increased 5-s peak (590?±?191 vs. 604?±?215W, P?=?0.41) and 30-s mean (495?±?137 vs. 503?±?154W, P?=?0.48) power output during the final 30-s maximal-effort cycling as compared to the no warm-up condition (5-s peak: 471?±?165W; 30-s mean: 398?±?117W). VO2 during the 120-s supramaximal cycling was similarly increased by the two warm-ups as compared to no-warm up (P?≤?0.05). These findings show that work-matched supramaximal intermittent and submaximal constant-workload warm-ups improve final sprint (~30?s) performance to similar extents during the late stage of a 120-s supramaximal exercise bout.  相似文献   

11.
Abstract

Glutamine enhances the exercise-induced expansion of the tricarboxylic acid intermediate pool. The aim of the present study was to determine whether oral glutamine, alone or in combination with hyperoxia, influenced oxidative metabolism and cycle time-trial performance. Eight participants consumed either placebo or 0.125 g · kg body mass?1 of glutamine in 5 ml · kg body mass?1 placebo 1 h before exercise in normoxic (control and glutamine respectively) or hyperoxic (FiO2 = 50%; hyperoxia and hyperoxia + glutamine respectively) conditions. Participants then cycled for 6 min at 70% maximal oxygen uptake ([Vdot]O2max) immediately before completing a brief high-intensity time-trial (~4 min) during which a pre-determined volume of work was completed as fast as possible. The increment in pulmonary oxygen uptake during the performance test (Δ[Vdot]O2max, P = 0.02) and exercise performance (control: 243 s, s x  = 7; glutamine: 242 s, s x  = 3; hyperoxia: 231 s, s x  = 3; hyperoxia + glutamine: 228 s, s x  = 5; P < 0.01) were significantly improved in hyperoxic conditions. There was some evidence that glutamine ingestion increased Δ[Vdot]O2max in normoxia, but not hyperoxia (interaction drink/FiO2, P = 0.04), but there was no main effect or impact on performance. Overall, the data show no effect of glutamine ingestion either alone or in combination with hyperoxia, and thus no limiting effect of the tricarboxylic acid intermediate pool size, on oxidative metabolism and performance during maximal exercise.  相似文献   

12.
The aim of this study was to investigate the effect of pre-induced inspiratory muscle fatigue (IMF) on race-paced swimming and acid-base status. Twenty-one collegiate swimmers performed two discontinuous 400-m race-paced swims on separate days, with (IMF trial) and without (control trial) pre-induced IMF. Swimming characteristics, inspiratory and expiratory mouth pressures, and blood parameters were recorded. IMF and expiratory muscle fatigue (P < 0.05) were evident after both trials and swimming time was slower (P < 0.05) from 150-m following IMF inducement. Pre-induced IMF increased pH before the swim (P < 0.01) and reduced bicarbonate (P < 0.05) and the pressure of carbon dioxide (PCO2) (P < 0.05). pH (P < 0.05), bicarbonate (P < 0.01) and PCO2 (P < 0.05) were lower during swimming in the IMF trial. Blood lactate was similar before both trials (P > 0.05) but was higher (P < 0.01) in the IMF trial after swimming. Pre-induced IMF induced respiratory alkalosis, reduced bicarbonate buffering capacity and slowed swimming speed. Pre-induced and propulsion-induced IMF reflected metabolic acidosis arising from dual role breathing and propulsion muscle fatigue.  相似文献   

13.
Abstract

This study examined the effects of combined glucose and sodium bicarbonate ingestion prior to intermittent exercise. Ninemales (mean ± s age 25.4 ± 6.6 years, body mass 78.8 ± 12.0 kg, maximal oxygen uptake ([Vdot]O2max) 47.0 ± 7ml · kg · min?1) undertook 4 × 45 min intermittent cycling trials including 15 × 10 s sprints one hour after ingesting placebo (PLA), glucose (CHO), sodium bicarbonate (NaHCO3) or a combined CHO and NaHCO3 solution (COMB). Post ingestion blood pH (7.45 ± 0.03, 7.46 ± 0.03, 7.32 ± 0.05, 7.32 ± 0.01) and bicarbonate (30.3 ± 2.1, 30.7 ± 1.8, 24.2 ± 1.2, 24.0 ± 1.8 mmol · l?1) were greater for NaHCO3 and COMB when compared to PLA and CHO, remaining elevated throughout exercise (main effect for trial; P < 0.05). Blood lactate concentration was greatest throughout exercise for NaHCO3 and COMB (main effect for trial; P < 0.05). Blood glucose concentration was greatest 15 min post-ingestion for CHO followed by COMB, NaHCO3 and PLA (7.13 ± 0.60, 5.58 ± 0.75, 4.51 ± 0.56, 4.46 ± 0.59 mmol · l?1, respectively; P < 0.05). Gastrointestinal distress was lower during COMB compared to NaHCO3 at 15 min post-ingestion (P < 0.05). No differences were observed for sprint performance between trials (P = 1.00). The results of this study suggest that a combined CHO and NaHCO3 beverage reduced gastrointestinal distress and CHO availability but did not improve performance. Although there was no effect on performance an investigation of the effects in more highly trained individuals may be warranted.  相似文献   

14.
The aim of this study was to examine the effect of intermittent high-intensity shuttle running and fluid ingestion on the performance of a soccer skill. Nine semi-professional soccer players volunteered to participate in the study. Their mean (± sx ) age, body mass and maximal oxygen uptake were 20.2 ± 0.4 years, 73.2 ± 1.8 kg and 59.1 ± 1.3 ml·kg-1 ·min-1 respectively. The players were allocated to two randomly assigned trials: ingesting or abstaining from fluid intake during a 90 min intermittent exercise protocol (Loughborough Intermittent Shuttle Test:LIST).This test was designed to simulate the minimum physical demands faced by soccer players during a game. Before and immediately after performance of the test,the players completed a soccer skill test and a mental concentration test. Performance of the soccer skill test after the 'no-fluid' trial deteriorated by 5% (P ? 0.05),but was maintained during the fluid trial. Mean heart rate, perceived exertion, serum aldosterone, osmolality, sodium and cortisol responses during the test were higher (P ? 0.05) in the 'no-fluid' trial than in the fluid trial. The results of this study suggest that soccer players should consume fluid throughout a game to help prevent a deterioration in skill performance.  相似文献   

15.
The aim of this study was to examine the effect of intermittent high-intensity shuttle running and fluid ingestion on the performance of a soccer skill. Nine semi-professional soccer players volunteered to participate in the study. Their mean (+/- s(x)) age, body mass and maximal oxygen uptake were 20.2+/-0.4 years, 73.2+/-1.8 kg and 59.1+/-1.3 ml x kg(-1) min(-1) respectively. The players were allocated to two randomly assigned trials: ingesting or abstaining from fluid intake during a 90 min intermittent exercise protocol (Loughborough Intermittent Shuttle Test: LIST). This test was designed to simulate the minimum physical demands faced by soccer players during a game. Before and immediately after performance of the test, the players completed a soccer skill test and a mental concentration test. Performance of the soccer skill test after the 'no-fluid' trial deteriorated by 5% (P<0.05), but was maintained during the fluid trial. Mean heart rate, perceived exertion, serum aldosterone, osmolality, sodium and cortisol responses during the test were higher (P<0.05) in the 'no-fluid' trial than in the fluid trial. The results of this study suggest that soccer players should consume fluid throughout a game to help prevent a deterioration in skill performance.  相似文献   

16.
Abstract

In this study, we examined the effects of three recovery intensities on time spent at a high percentage of maximal oxygen uptake (t90[Vdot]O2max) during a short intermittent session. Eight endurance-trained male adolescents (16 ± 1 years) performed four field tests until exhaustion: a graded test to determine maximal oxygen uptake ([Vdot]O2max; 57.4 ± 6.1 ml · min?1 · kg?1) and maximal aerobic velocity (17.9 ± 0.4 km · h?1), and three intermittent exercises consisting of repeat 30-s runs at 105% of maximal aerobic velocity alternating with 30 s active recovery at 50% (IE50), 67% (IE67), and 84% (IE84) of maximal aerobic velocity. In absolute values, mean t90[Vdot]O2max was not significantly different between IE50 and IE67, but both values were significantly longer compared with IE84. When expressed in relative values (as a percentage of time to exhaustion), mean t90[Vdot]O2max was significantly higher during IE67 than during IE50. Our results show that both 50% and 67% of maximal aerobic velocity of active recovery induced extensive solicitation of the cardiorespiratory system. Our results suggest that the choice of recovery intensity depends on the exercise objective.  相似文献   

17.
The purpose of this study was to evaluate two practical interval training protocols on cardiorespiratory fitness, lipids and body composition in overweight/obese women. Thirty women (mean ± SD; weight: 88.1 ± 15.9 kg; BMI: 32.0 ± 6.0 kg · m2) were randomly assigned to ten 1-min high-intensity intervals (90%VO2 peak, 1 min recovery) or five 2-min high-intensity intervals (80–100% VO2 peak, 1 min recovery) or control. Peak oxygen uptake (VO2 peak), peak power output (PPO), body composition and fasting blood lipids were evaluated before and after 3 weeks of training, completed 3 days per week. Results from ANCOVA analyses demonstrated no significant training group differences for any primary variables (P > 0.05). When training groups were collapsed, 1MIN and 2MIN resulted in a significant increase in PPO (?18.9 ± 8.5 watts; P = 0.014) and time to exhaustion (?55.1 ± 16.4 s; P = 0.001); non-significant increase in VO2 peak (?2.36 ± 1.34 ml · kg?1 · min?1; P = 0.185); and a significant decrease in fat mass (FM) (??1.96 ± 0.99 kg; P = 0.011). Short-term interval exercise training may be effective for decreasing FM and improving exercise tolerance in overweight and obese women.  相似文献   

18.
The aim of this study was to assess the effect of an acute bout of high-intensity intermittent exercise on saliva IgA concentration and alpha-amylase activity, since this type of training is commonly incorporated into the training programmes of endurance athletes and games players. Eight well-trained male games players took part in the study. They reported to the laboratory after an overnight fast and performed a 60-min cycle exercise task consisting of twenty 1-min periods at 100% VO2max, each separated by 2 min recovery at 30% VO2max. Unstimulated whole saliva was collected over a 5-min period into pre-weighed tubes and analysed for total protein, saliva IgA and alpha-amylase. The saliva flow rate ranged from 0.08 to 1.40 ml x min(-1) at rest and was not significantly affected by the exercise. The performance of the intermittent exercise bout did not affect the saliva IgA concentration, but caused a five-fold increase in alpha-amylase activity (P<0.01 compared with pre-exercise) and a three-fold increase in total protein concentration (P<0.01). These returned to pre-exercise values within 2.5 h post-exercise. It has been suggested that IgA concentration should be expressed as the ratio to total protein concentration, to correct for any concentrating effect due to evaporative loss of saliva water when breathing through the mouth (as in strenuous exercise). The present study clearly demonstrates that this is not appropriate, since there is an increase in salivary protein secretion rate immediately after exercise (571+/-77 microg x min(-1) compared with 218+/-71 microg x min(-1) pre-exercise; P<0.05). The increased saliva alpha-amylase activity after exercise may improve the protective effect of saliva, since this enzyme is known to inhibit bacterial attachment to oral surfaces. The saliva alpha-amylase secretion rate was lower immediately pre-exercise than at any other instant, which may have been due to anticipatory psychological stress, although the subjects were all familiar with interval exercise. This emphasizes the need for true resting non-stressed control conditions in future studies of the effects of exercise on saliva constituents.  相似文献   

19.
Nine male student games players consumed either flavoured water (0.1 g carbohydrate, Na+ 6 mmol x l(-1)), a solution containing 6.5% carbohydrate-electrolytes (6.5 g carbohydrate, Na+ 21 mmol x l(-1)) or a taste placebo (Na+ 2 mmol x l(-1)) during an intermittent shuttle test performed on three separate occasions at an ambient temperature of 30 degrees C (dry bulb). The test involved five 15-min sets of repeated cycles of walking and variable speed running, each separated by a 4-min rest (part A of the test), followed by 60 s run/60 s rest until exhaustion (part B of the test). The participants drank 6.5 ml x kg(-1) of fluid as a bolus just before exercise and thereafter 4.5 ml x kg(-1) during every exercise set and rest period (19 min). There was a trial order effect. The total distance completed by the participants was greater in trial 3 (8441 +/- 873 m) than in trial 1 (6839 +/- 512, P < 0.05). This represented a 19% improvement in exercise capacity. However, the trials were performed in a random counterbalanced order and the participants completed 8634 +/- 653 m, 7786 +/- 741 m and 7099 +/- 647 m in the flavoured water (FW), placebo (P) and carbohydrate-electrolyte (CE) trials, respectively (P = 0.08). Sprint performance was not different between the trials but was impaired over time (FW vs P vs CE: set 1, 2.41 +/- 0.02 vs 2.39 +/- 0.03 vs 2.39 +/- 0.03 s; end set, 2.46 +/- 0.03 vs 2.47 +/- 0.03 vs 2.47 +/- 0.02 s; main effect time, P < 0.01). The rate of rise in rectal temperature was greater in the carbohydrate-electrolyte trial (rise in rectal temperature/duration of trial, degrees C x h(-1); FW vs CE, P < 0.05; P vs CE, N.S.). Blood glucose concentrations were higher in the carbohydrate-electrolyte than in the other two trials (FW vs P vs CE:rest, 4.4 +/- 0.1 vs 4.3 +/- 0.1 vs 4.2 +/- 0.1 mmol x l(-1); end of exercise, 5.4 +/- 0.3 vs 6.4 +/- 0.6 vs 7.2 +/- 0.5 mmol x l(-1); main effect trial, P < 0.05; main effect time, P < 0.01). Plasma free fatty acid concentrations at the end of exercise were lower in the carbohydrate-electrolyte trial than in the other two trials (FW vs P vs CE: 0.57 +/- 0.08 vs 0.53 +/- 0.11 vs 0.29 +/- 0.04 mmol x l(-1); interaction, P < 0.01). The correlation between the rate of rise in rectal temperature (degrees C x h(-1)) and the distance completed was -0.91, -0.92 and -0.96 in the flavoured water, placebo and carbohydrate-electrolyte conditions, respectively (P < 0.01). Heart rate, blood pressure, plasma ammonia, blood lactate, plasma volume and rate of perceived exertion were not different between the three fluid trials. Although drinking the carbohydrate-electrolyte solution induced greater metabolic changes than the flavoured water and placebo solutions, it is unlikely that in these unacclimated males carbohydrate availability was a limiting factor in the performance of intermittent running in hot environmental conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号