首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biomechanical aspects of new techniques in alpine skiing and ski-jumping   总被引:1,自引:0,他引:1  
There have been considerable changes in equipment design and movement patterns in the past few years both in alpine skiing and ski-jumping. These developments have been matched by methods of analysing movements in field conditions. They have yielded new insights into the skills of these specific winter sports. Analytical techniques have included electromyography, kinetic and kinematic methods and computer simulations. Our aim here is to review biomechanical research in alpine skiing and ski-jumping. We present in detail the techniques currently used in alpine skiing (carving technique) and ski-jumping (V-technique), primarily using data from the authors' own research. Finally, we present a summary of the most important results in biomechanical research both in alpine skiing and ski-jumping. This includes an analysis of specific conditions in alpine skiing (type of turn, terrain, snow, speed, etc.) and the effects of equipment, materials and individual-specific abilities on performance, safety and joint loading in ski-jumping.  相似文献   

2.
Abstract

The aims of the study were to: (1) adapt the “double-push” technique from inline skating to cross-country skiing; (2) compare this new skiing technique with the conventional skate skiing cross-country technique; and (3) test the hypothesis that the double-push technique improves skiing speed in a short sprint. 13 elite skiers performed maximum-speed sprints over 100 m using the double-push skate skiing technique and using the conventional “V2” skate skiing technique. Pole and plantar forces, knee angle, cycle characteristics, and electromyography of nine lower body muscles were analysed. We found that the double-push technique could be successfully transferred to cross-country skiing, and that this new technique is faster than the conventional skate skiing technique. The double-push technique was 2.9 ± 2.2% faster (P < 0.001), which corresponds to a time advantage of 0.41 ± 0.31 s over 100 m. The double-push technique had a longer cycle length and a lower cycle rate, and it was characterized by higher muscle activity, higher knee extension amplitudes and velocities, and higher peak foot forces, especially in the first phase of the push-off. Also, the foot was more loaded laterally in the double-push technique than in the conventional skate skiing technique.  相似文献   

3.
The aims of the study were to: (1) adapt the "double-push" technique from inline skating to cross-country skiing; (2) compare this new skiing technique with the conventional skate skiing cross-country technique; and (3) test the hypothesis that the double-push technique improves skiing speed in a short sprint. 13 elite skiers performed maximum-speed sprints over 100 m using the double-push skate skiing technique and using the conventional "V2" skate skiing technique. Pole and plantar forces, knee angle, cycle characteristics, and electromyography of nine lower body muscles were analysed. We found that the double-push technique could be successfully transferred to cross-country skiing, and that this new technique is faster than the conventional skate skiing technique. The double-push technique was 2.9 +/- 2.2% faster (P < 0.001), which corresponds to a time advantage of 0.41 +/- 0.31 s over 100 m. The double-push technique had a longer cycle length and a lower cycle rate, and it was characterized by higher muscle activity, higher knee extension amplitudes and velocities, and higher peak foot forces, especially in the first phase of the push-off. Also, the foot was more loaded laterally in the double-push technique than in the conventional skate skiing technique.  相似文献   

4.
滑雪运动已成为冬季大众健身、休闲的最佳选择,通过对黑龙江省高山滑雪指导员(下简称“指导员”)的需求,以及他们的个人档案等问题进行调查与研究。目的是为黑龙江省主管部门今后对高山滑雪指导员的培训和管理工作提供依据,同时,促进滑雪产业的良性发展。  相似文献   

5.
大众健身体育的兴起,使高山滑雪逐渐成为人们所喜爱的人。从体育营销学和体育社会学的视角,对高山滑雪指导员应具备的素质、能力进行阐述,进一步分析高山滑雪指导员的素质、知识、能力的内涵,使得我国高山滑雪指导员整体素质逐步达到规范化、制度化和社会化。  相似文献   

6.
Much of the training of competitive telemark skiers is performed as dry-land exercises. The specificity of these exercises is important for optimizing the training effect. Our aim here was to study the activation of the knee extensor musculature and knee angular displacement during competitive telemark skiing and during dry-land strength training exercises to determine the specificity of the latter. Specificity was analysed with respect to angular amplitude, angular velocity, muscle action and electromyographic (EMG) activity. Five male telemark skiers of national and international standard volunteered to participate in the study, which consisted of two parts: (1) skiing a telemark ski course and (2) specific dry-land strength training exercises for telemark skiing (telemark jumps and barbell squats). The angular displacement of the right knee joint was recorded with an electrogoniometer. A tape pressure sensor was used to measure pressure between the sole of the foot and the bottom of the right ski boot. Electromyographic activity in the right vastus lateralis was recorded with surface electrodes. The EMG activity recorded during maximum countermovement jumps was used to normalize the EMG activity during telemark skiing, telemark jumps and barbell squats. The results showed that knee angular displacement during telemark skiing and dry-land telemark jumps had four distinct phases: a flexion (F1) and extension (E1) phase during the thrust phase of the outside ski/leg in the turn/jump and a flexion (F2) and extension (E2) phase when the leg was on the inside of the turn/jump. The vastus lateralis muscle was activated during F1 and E1 in the thrust phase during telemark skiing and telemark jumps. The overall net knee angular amplitude was significantly greater (P<0.05) for telemark jumps than for telemark skiing. Barbell squats showed a knee angular amplitude significantly greater than that in telemark skiing (P<0.05). The mean knee angular velocity of the F1 and E1 phases during telemark skiing was about 0.47 rad?·?s?1; during barbell squats, it was about 1.22 rad?·?s?1. The angular velocity during telemark jumps was 2.34 and 1.59 rad?·?s?1 in the F1 and E1 phase, respectively. The normalized activation level of the EMG bursts during telemark skiing, telemark jumps and barbell squats was 70–80%. In conclusion, the muscle action and level of activation in the vastus lateralis during the F1 and E1 phases were similar during telemark skiing and dry-land exercises. However, the dry-land exercises showed a larger knee extension and flexion amplitude and angular velocity compared with telemark skiing. It appears that an adjustment of knee angular velocity during barbell squats and an adjustment of knee angle amplitude during both telemark jumps and barbell squats will improve specificity during training.  相似文献   

7.
介绍了高山滑雪多媒体网络课件设计思想和具体的制作过程,阐述了网页界面、素材收集、分横块设计等观点,对课件内容的制作做了全面的描述.对脚本的制作、素材制作、课件网上发布等,给出了一个完整的多媒体网络课件总体设计和制作的蓝图.  相似文献   

8.
Cycle and force characteristics were examined in 11 elite male cross-country skiers using the diagonal stride technique while skiing uphill (7.5°) on snow at moderate (3.5 ± 0.3 m/s), high (4.5 ± 0.4 m/s), and maximal (5.6 ± 0.6 m/s) velocities. Video analysis (50 Hz) was combined with plantar (leg) force (100 Hz), pole force (1,500 Hz), and photocell measurements. Both cycle rate and cycle length increased from moderate to high velocity, while cycle rate increased and cycle length decreased at maximal compared to high velocity. The kick time decreased 26% from moderate to maximal velocity, reaching 0.14 s at maximal. The relative kick and gliding times were only altered at maximal velocity, where these were longer and shorter, respectively. The rate of force development increased with higher velocity. At maximal velocity, sprint-specialists were 14% faster than distance-specialists due to greater cycle rate, peak leg force, and rate of leg force development. In conclusion, large peak leg forces were applied rapidly across all velocities and the shorter relative gliding and longer relative kick phases at maximal velocity allow maintenance of kick duration for force generation. These results emphasise the importance of rapid leg force generation in diagonal skiing.  相似文献   

9.
Diagonal skiing as a major classical technique has hardly been investigated over the last two decades, although technique and racing velocities have developed substantially. The aims of the present study were to 1) analyse pole and leg kinetics and kinematics during submaximal uphill diagonal roller skiing and 2) identify biomechanical factors related to performance. Twelve elite skiers performed a time to exhaustion (performance) test on a treadmill. Joint kinematics and pole/plantar forces were recorded separately during diagonal roller skiing (9°; 11 km/h). Performance was correlated to cycle length (r = 0.77; P < 0.05), relative leg swing (r = 0.71), and gliding time (r = 0.74), hip flexion range of motion (ROM) during swing (r = 0.73) and knee extension ROM during gliding (r = 0.71). Push-off demonstrated performance correlations for impulse of leg force (r = 0.84), relative duration (r = ? 0.76) and knee flexion (r = 0.73) and extension ROM (r = 0.74). Relative time to peak pole force was associated with performance (r = 0.73). In summary, diagonal roller skiing performance was linked to 1) longer cycle length, 2) greater impulse of force during a shorter push-off with larger flexion/extension ROMs in leg joints, 3) longer leg swing, and 4) later peak pole force, demonstrating the major key characteristics to be emphasised in training.  相似文献   

10.
ABSTRACT

Cross-country skiing is a complex endurance sport requiring technical skills, in addition to considerable physiological and tactical abilities. This review aims to identify biomechanical factors that influence the performance of cross-country skiers. Four electronic databases were searched systematically for original articles in peer-reviewed journals addressing the relationship between biomechanical factors (including kinematics, kinetics, and muscle activation) and performance while skiing on snow or roller skiing. Of the 46 articles included, 22 focused exclusively on the classical technique, 18 on the skating technique, and six on both. The indicators of performance were: results from actual or simulated races (9 articles); speed on specific tracts (6 articles); maximal or peak speed (11 articles); skiing economy or efficiency (11 articles); and grouping on the basis of performance or level of skill (12 articles). The main findings were that i) cycle length, most often considered as a major determinant of skiing speed, is also related to skiing economy and level of performance; ii) higher cycle rate related with maximal speed capacity, while self-selected cycle rate improves skiing economy at sub-maximal speeds; iii) cross-country skiing performance appears to be improved by joint, whole-body, ski, and pole kinematics that promote forward propulsion while minimizing unnecessary movement.  相似文献   

11.
对中国高山滑雪的现状进行分析,并具体地提出了一系列整改措施,旨在找出差距、改善高山滑雪现状,提高全民普及率,尽早提高专业队整体素质.  相似文献   

12.

In this study, we analyzed the relationship between running economy (RE) and biomechanical parameters in a group running at the same relative intensity and same absolute velocity. Sixteen homogeneous male long-distance runners performed a test to determine RE at 4.4 m.s-1, corresponding to 11.1% below velocity at the ventilatory threshold. We found significant correlations between RE and biomechanical variables (vertical oscillation of the center of mass, stride frequency, stride length, balance time, relative stride length, range of elbow motion, internal knee, ankle angles at foot strike, and electromyographic activity of the semitendinosus and rectus femoris muscles). In conclusion, changes in running technique can influence RE and lead to improved running performance.  相似文献   

13.
The present study was designed to analyse and compare the kinetics and kinematics associated with three different starting strategies during classic cross-country ski racing. Inside a ski tunnel, 12 elite male skiers performed three sets of three 38?m starts. Each set included one start using: double poling only (DP), diagonal stride only (DIA) and freely chosen (FREE) (i.e. where subjects used the strategy or combination of strategies they felt was fastest) in random order. The first 18?m was performed on a series of force plates that measured horizontal and vertical forces followed by 20?m of a standard snow track. Additionally, cycle characteristics and joint angles were measured. DIA and FREE were faster over 38?m than DP (P?.01). Net horizontal impulse (taking into account both positive and negative impulses) 5–10?m after the start was lower during DP than during DIA and FREE (both P?<?.05). All subjects skied faster when using only DIA for the entire 38?m. Furthermore, the sum duration and frequency of propulsive contacts over the first 18?m was less in DP than DIA and FREE (P?相似文献   

14.
The aims of this study were to compare the aerobic energy cost of four 'on-snow' skating techniques in cross-country skiing and to examine the relationships between performance and aerobic energy cost. Twelve male skiers from recreational to national standard performed four level skating trials of 6 min duration in random order, each at the same submaximal velocity but with a different skating technique: (1) 'offset' (V1), using a double asymmetrical and asynchronous pole plant as weight is transferred to one ski; (2) 'two-skate' (V2A), where the pole plant is symmetrical; (3) 'one-skate' (V2), where there is a pole plant as weight is transferred to each ski; and (4) 'conventional', without poles. Oxygen uptake (VO2), pulmonary ventilation, the respiratory exchange ratio and heart rate were measured using a K4(b2) portable gas analyser. The aerobic energy cost (VO2/mean speed) and heart rate were higher (P < 0.05) in the one-skate than in the offset condition. This may be explained by the greater and more efficient use of the upper body and the lower variation in centre of gravity velocity in the offset condition. The aerobic energy cost was 5-9% higher (P < 0.01) in the conventional than in the other techniques, probably because of the shorter duration of propulsive forces within a cycle in the conventional skating condition. Moreover, in ski skating, the mechanical efficiency (propulsive forces/total forces) was shown to be higher in the upper than in the lower limbs. The correlation coefficient between performance and aerobic energy cost was significant in the two-skate (r = 0.68, P = 0.02), one-skate (r = 0.72, P = 0.01) and conventional (r = 0.62, P = 0.04) conditions, but not in the offset condition (r = 0.50, P = 0.10). Our results stress the importance of the upper body component in cross-country skiing and that the aerobic energy cost discriminates between skiers of different standards.  相似文献   

15.
The aim of this study was to perform a biomechanical validation of a double poling imitation drill on a rollerboard. Six elite cross-country skiers performed three imitation drill trials at maximal speed at 13 degrees inclination and in double poling on roller skis on a paved road of 3 degrees. Pole and strap forces, elbow and hip angles and EMG activity of eight upper body muscles were measured. Force curves showed similar characteristics, except for impact force occurring only at pole plant in double poling on roller skis. Double poling on a rollerboard includes an eccentric roll-down phase not appearing in double polling on roller skis. Forces on the rollerboard were similar to those on roller skis. Courses of the elbow angles indicated similar shapes, except for the angle at the start of the propulsion phase and, consequently, during flexion (p < 0.01). Propulsion time and cycle duration were longer and frequency lower on the rollerboard (all p < 0.001). Muscle activities were not significantly different, except for stronger biceps brachii (p < 0.01) and weaker erector spinae activation (p < 0.05) on the rollerboard. Muscle coordination patterns showed similar onset and offset points of each muscle and comparable activations in both activities, except for biceps brachii. Two movement strategies on the rollerboard were found, which led to small differences in measured variables. The biomechanical validity of double poling on a rollerboard can be judged as moderately high, being aware of the differences in some variables that might be considered in training sessions on the rollerboard, particularly when using intervals with high number of repetitions.  相似文献   

16.
自我效能理论在初学者滑雪运动技能形成中的应用   总被引:2,自引:1,他引:1  
针对高山滑雪运动的特点及滑雪运动初学者的特征,以自我效能理论为基础,提出了运用自我效能理论的基本观点促进高山滑雪运动技能的学习,为爱好滑雪运动的人们及教授高山滑雪的体育工作者提供可参考的建议。  相似文献   

17.
高山滑雪初学者运动损伤原因调查分析   总被引:2,自引:0,他引:2  
运用文献资料法、实地观察法和数理统计法等,对沈阳白清寨高山滑雪的初学者运动损伤情况进行调查,分析其损伤的原因,以期为大众初学者安全地进行滑雪提供参考。  相似文献   

18.
主要通过文献研究,从应用的角度出发,对肌电图(EMG)在运动生物力学研究中的相关研究进行综述.包括EMG的测量、结果的处理与分析、应用研究成果、存在问题和应用展望.重点对目前的研究提出问题并进行探讨,为EMG在运动生物力学中的进一步研究与应用提出思考和帮助.  相似文献   

19.
采用文献资料法,观察法等对辽宁省首届高山滑雪社会指导员的现状进行研究,旨在为推动滑雪运动的发展提供参考。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号