首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alpine ski racing is a popular sport in many countries and a lot of research has gone into optimising athlete performance. Two factors influence athlete performance in a ski race: speed and the chosen path between the gates. However, to date there is no objective, quantitative method to determine instantaneous skiing performance that takes both of these factors into account. The purpose of this short communication was to define a variable quantifying instantaneous skiing performance and to study how this variable depended on the skiers' speed and on their chosen path. Instantaneous skiing performance was defined as time loss per elevation difference dt/dz, which depends on the skier's speed v(z), and the distance travelled per elevation difference ds/dz. Using kinematic data collected in an earlier study, it was evaluated how these variables can be used to assess the individual performance of six ski racers in two slalom turns. The performance analysis conducted in this study might be a useful tool not only for athletes and coaches preparing for competition, but also for sports scientists investigating skiing techniques or engineers developing and testing skiing equipment.  相似文献   

2.
3.
Time differences between medalists at Olympic or World Cup alpine ski races are often less than 0.01 s. One factor that could affect these small differences is the line taken between the numerous gates passed through while speeding down the ski slope. The determination of the ‘quickest line’ is therefore critical to winning races. In this study the quickest lines are calculated by direct optimal control theory which converts an optimal control problem into a parameter optimization problem that is solved using a nonlinear programming method. Specifically, the problem is described in terms of an objective function in which state and control variables are implicitly involved. The objective function is the time between the starting point and finishing gate, while state variables are positions of the ski-skier systems on a ski slope, rotational angles of skis, velocities, and rotational velocity at a discrete time, i.e., a node. The control variable at each node is the skier-controlled edging angle between the ski sole and snow surface. Equations of motion of the ski-skier system on a ski slope are numerically satisfied at the midpoint between neighbouring nodes, and the original problem is converted into a nonlinear programming problem with equality and inequality constraints. The problem is solved by the sequential quadratic programming method in which numerical calculations are carried out using the MATLAB Optimization Toolbox. Numerical calculations are presented to determine the quickest lines of an uphill and a downhill ski turn with a starting point, first gate, and second gate (finish line) having been successfully carried out. The quickest line through four gates could not be calculated due to numerical difficulty. Instead, the descent line was respectively calculated for an uphill and downhill turn and simply added, giving a resultant time that represents an upper bound.  相似文献   

4.
Alpine ski racing is one of the most popular sports in many countries; nevertheless, selection disadvantages and severe injuries result in high dropout rates. In this review we summarize existing knowledge about the specific challenges associated with selection bias and injuries, and their effects on talent development in ski racing.

The relative age effect (RAE) appears in all age categories of national Austrian and international alpine ski racing. Relatively younger athletes seem to only have a chance for selection if they are early maturing. Talent selection processes should consider both the biological maturity status as well as the relative age; additionally, a competition system based on a rotating cut-off date might contribute to a reduction of RAE. Youth and adolescent ski racers report lower injury rates compared to World Cup athletes. The knee was the most affected body part in relation to traumatic injuries. The most frequently reported overuse injuries were knee pain (youth) and low back pain (adolescent level). Athlete-related modifiable risk factors were core strength, neuromuscular control, leg extension strength and limb asymmetries. Based on these findings, prevention measures should be expanded to contribute to long-term injury prevention. In future research more multi-disciplinary, longitudinal studies should be performed.  相似文献   


5.
6.
A common anterior cruciate ligament (ACL) injury situation in alpine ski racing is landing back-weighted after a jump. Simulated back-weighted landing situations showed higher ACL-injury risk for increasing ski boot rear stiffness (SBRS) without considering muscles. It is well known that muscle forces affect ACL tensile forces during landing. The purpose of this study is to investigate the effect of different SBRS on the maximal ACL tensile forces during injury prone landings considering muscle forces by a two-dimensional musculoskeletal simulation model. Injury prone situations for ACL-injuries were generated by the musculoskeletal simulation model using measured kinematics of a non-injury situation and the method of Monte Carlo simulation. Subsequently, the SBRS was varied for injury prone landings. The maximal ACL tensile forces and contributing factors to the ACL forces were compared for the different SBRS. In the injury prone landings the maximal ACL tensile forces increased with increasing SBRS. It was found that the higher maximal ACL force was caused by higher forces acting on the tibia by the boot and by higher quadriceps muscle forces both due to the higher SBRS. Practical experience suggested that the reduction of SBRS is not accepted by ski racers due to performance reasons. Thus, preventive measures may concentrate on the reduction of the quadriceps muscle force during impact.  相似文献   

7.
Biophysical loading of the elbow and wrist is a potential reason for chronic lesions in gymnastics and present a real concern for coaches, scientist and clinicians. Previous research has identified injury risk factors during round-off (RO) skills in elite female gymnasts. The aim of this study was to investigate key elbow and wrist joint injury risk factors during different techniques of fundamental cartwheel (CW) and RO skills performed by young female artistic gymnasts. Seventeen active young female gymnasts performed 30 successful trials of both CW and RO from a hurdle step with three different hand positions (parallel (10), T-shape (10) and reverse (10)). Synchronised kinematic (240?Hz) and kinetic (1200?Hz) data were collected for each trial. One-way repeated measures ANOVA and effect size (ES) were used for statistical analysis. The results showed statistically significant differences (P?0.8) among hand positions for peak vertical ground reaction force (VGRF), peak elbow compression force, peak wrist compression force, elbow internal adduction moment and wrist dorsiflexion angle. In conclusion, the parallel and reverse techniques increase peak VGRF, elbow and wrist compression forces, and elbow internal adduction moment. These differences indicate that the parallel and reverse techniques may increase the potential of elbow and wrist injuries in young gymnasts compared with the T-shape technique; this is of particular importance with the high frequency of the performance of these fundamental skills.  相似文献   

8.
Knowing how to enhance alpine skiing performance is essential for effective coaching. The purpose of this study was to explore the role of path length- and speed-related factors for performance enhancement, while skiing on a homogeneously set/constantly inclined giant slalom course section (average gate distance: 27?m; offset: 8?m; slope inclination: 26°). During a video-based three-dimensional kinematic field-experiment, the data of six athletes who skied a two-gate section on four different types of skis were collected. The performance parameter analysed was section time. The performance predictors analysed were centre of mass (CoM), path length and the change in specific mechanical energy per entrance speed along the analysed section. Furthermore, since the current study examined alpine skiing performance within short sections, the skier’s entrance speed was also considered. Classified as a high-performance and a low-performance group based on section time, slow and fast trials significantly differed in CoM path length, the change in specific mechanical energy per entrance speed and entrance speed. The entrance speed of all trials analysed ranged between 15.25 and 17.66?m/s. In trials with both high and low entrance speed, the change in specific mechanical energy per entrance speed was found to be more relevant for the prediction of section time than CoM path length. However, further studies should investigate whether such a prioritization can be unrestrictedly generalized to other situations, such as entrance speeds, course sets, slope inclinations and competition disciplines different to those assessed in the current study.  相似文献   

9.
Repetitive stresses and movements on the shoulder in the volleyball spike expose this joint to overuse injuries, bringing athletes to a career threatening injury. Assuming that specific spike techniques play an important role in injury risk, we compared the kinematic of the traditional (TT) and the alternative (AT) techniques in 21 elite athletes, evaluating their safety with respect to performance. Glenohumeral joint was set as the centre of an imaginary sphere, intersected by the distal end of the humerus at different angles. Shoulder range of motion and angular velocities were calculated and compared to the joint limits. Ball speed and jump height were also assessed. Results indicated the trajectory of the humerus to be different for the TT, with maximal flexion of the shoulder reduced by 10 degrees, and horizontal abduction 15 degrees higher. No difference was found for external rotation angles, while axial rotation velocities were significantly higher in AT, with a 5% higher ball speed. Results suggest AT as a potential preventive solution to shoulder chronic pathologies, reducing shoulder flexion during spiking. The proposed method allows visualisation of risks associated with different overhead manoeuvres, by depicting humerus angles and velocities with respect to joint limits in the same 3D space.  相似文献   

10.
In the sport of alpine skiing, knowledge about the centre of mass (CoM) kinematics (i.e. position, velocity and acceleration) is essential to better understand both performance and injury. This study proposes a global navigation satellite system (GNSS)-based method to measure CoM kinematics without restriction of capture volume and with reasonable set-up and processing requirements. It combines the GNSS antenna position, terrain data and the accelerations acting on the skier in order to approximate the CoM location, velocity and acceleration. The validity of the method was assessed against a reference system (video-based 3D kinematics) over 12 turn cycles on a giant slalom skiing course. The mean (± s) position, velocity and acceleration differences between the CoM obtained from the GNSS and the reference system were 9 ± 12 cm, 0.08 ± 0.19 m · s-1 and 0.22 ± 1.28 m · s-2, respectively. The velocity and acceleration differences obtained were smaller than typical differences between the measures of several skiers on the same course observed in the literature, while the position differences were slightly larger than its discriminative meaningful change. The proposed method can therefore be interpreted to be technically valid and adequate for a variety of biomechanical research questions in the field of alpine skiing with certain limitations regarding position.  相似文献   

11.
12.
A systematic approach to the analysis of sporting events is discussed. The basic tenet is that objective quantification of critical events is required for a complete analysis. This approach encompasses diverse areas of methodology and research, such as quantification, biomechanics and physiology. The theoretical underpinnings are behavioural, in so far as athletes produce observable behaviour that can be quantified and ultimately changed. Several areas of analysis are linked together in a general framework and each one of these areas is dealt with in detail.  相似文献   

13.
运用文献资料法、实验法和数理统计法,以10名辽宁省排球队女运动员为研究对象,获取受试者3步助跑后衔接跳跃扣球的起跳期在三维空间坐标中的轨迹和与地面的反作用力参数,以及髋关节、膝关节、踝关节的最大伸肌力矩和最大伸肌功率,研究排球不同扣球起跳下肢运动学的特征,为提高排球扣球起跳时的动作质量提供参考。结果表明:(1)后排先行脚、跟随脚的动作时间、动作总时间短于后排,后排起跳动作距离长于前排(P<0.01);(2)先行脚和跟随脚的髋关节、膝关节伸肌力矩后排大于前排(P>0.05);在踝关节伸肌力矩中,后排的先行脚大于前排(P>0.05),后排的跟随脚大于前排(P<0.05);(3)除先行脚的膝关节向心功率后排均小于前排外,先行脚和跟随脚的髋关节、膝关节、踝关节伸肌向心功率后排均大于前排。先行脚和跟随脚的髋关节、膝关节肌坏踝关节离心功率后排大于前排。  相似文献   

14.
Abstract

The most common bike fitting method to set the seat height is based on the knee angle when the pedal is in its lowest position, i.e. bottom dead centre (BDC). However, there is no consensus on what method should be used to measure the knee angle. Therefore, the first aim of this study was to compare three dynamic methods to each other and against a static method. The second aim was to test the intra-session reliability of the knee angle at BDC measured by dynamic methods. Eleven cyclists performed five 3-min cycling trials; three at different seat heights (25°, 30° and 35° knee angle at BDC according to static measure) and two at preferred seat height. Thirteen infrared cameras (3D), a high-speed camera (2D), and an electrogoniometer were used to measure the knee angle during pedalling, when the pedal was at the BDC. Compared to 3D kinematics, all other methods statistically significantly underestimated the knee angle (P = 0.00; η2 = 0.73). All three dynamic methods have been found to be substantially different compared to the static measure (effect sizes between 0.4 and 0.6). All dynamic methods achieved good intra-session reliability. 2D kinematics is a valid tool for knee angle assessment during bike fitting. However, for higher precision, one should use correction factor by adding 2.2° to the measured value.  相似文献   

15.
运动生物力学方法在运动分析中的应用   总被引:5,自引:1,他引:5  
随着科学技术的不断发展,运用运动生物力学方法对运动进行分析的手段变得越来越先进。为了给进行体育研究的人员提供分析思路与研究方法,对国内外目前普遍使用的运动学、动力学及将二者结合的方法进行综合评述,探讨各种方法的优缺点,并发现目前我国虽然较多使用运动学和动力学进行分析,但将两者结合起来进行分析者较少,就此提出将两种方法结合起来对运动项目进行分析的设想与思路,即通过等动测试获得做功关节处的肌力矩大小,并利用录像解析获得做功环节的运动学数据———角速度,将两者结合来分析功率输出情况。  相似文献   

16.
Abstract

The aim of this study was to investigate spatiotemporal and kinematic changes between the initial acceleration, transition and maximum velocity phases of a sprint. Sagittal plane kinematics from five experienced sprinters performing 50-m maximal sprints were collected using six HD-video cameras. Following manual digitising, spatiotemporal and kinematic variables at touchdown and toe-off were calculated. The start and end of the transition phase were identified using the step-to-step changes in centre of mass height and segment angles. Mean step-to-step changes of spatiotemporal and kinematic variables during each phase were calculated. Firstly, the study showed that if sufficient trials are available, step-to-step changes in shank and trunk angles might provide an appropriate measure to detect sprint phases in applied settings. However, given that changes in centre of mass height represent a more holistic measure, this was used to sub-divide the sprints into separate phases. Secondly, during the initial acceleration phase large step-to-step changes in touchdown kinematics were observed compared to the transition phase. At toe-off, step-to-step kinematic changes were consistent across the initial acceleration and transition phases before plateauing during the maximal velocity phase. These results provide coaches and practitioners with valuable insights into key differences between phases in maximal sprinting.  相似文献   

17.
Kinematic measurements conducted during bike set-ups utilise either static or dynamic measures. There is currently limited data on reliability of static and dynamic measures nor consensus on which is the optimal method. The aim of the study was to assess the difference between static and dynamic measures of the ankle, knee, hip, shoulder and elbow. Nineteen subjects performed three separate trials for a 10-min duration at a fixed workload (70% of peak power output). Static measures were taken with a standard goniometer (GM), an inclinometer (IM) and dynamic three-dimensional motion capture (3DMC) using an eight camera motion capture system. Static and dynamic joint angles were compared over the three trials to assess repeatability of the measurements and differences between static and dynamic values. There was a positive correlation between GM and IM measures for all joints. Only the knee, shoulder and elbow were positively correlated between GM and 3DMC, and IM and 3DMC. Although all three instruments were reliable, 3D motion analysis utilised different landmarks for most joints and produced different means. Changes in knee flexion angle from static to dynamic are attributable to changes in the positioning of the foot. Controlling for this factor, the differences are negated. It was demonstrated that 3DMC is not interchangeable with GM and IM, and it is recommended that 3DMC develop independent reference values for bicycle configuration.  相似文献   

18.
This study developed a method to determine whether the distribution of individual player performances can be modelled to explain match outcome in team sports, using Australian Rules football as an example. Player-recorded values (converted to a percentage of team total) in 11 commonly reported performance indicators were obtained for all regular season matches played during the 2014 Australian Football League season, with team totals also recorded. Multiple features relating to heuristically determined percentiles for each performance indicator were then extracted for each team and match, along with the outcome (win/loss). A generalised estimating equation model comprising eight key features was developed, explaining match outcome at a median accuracy of 63.9% under 10-fold cross-validation. Lower 75th, 90th and 95th percentile values for team goals and higher 25th and 50th percentile values for disposals were linked with winning. Lower 95th and higher 25th percentile values for Inside 50s and Marks, respectively, were also important contributors. These results provide evidence supporting team strategies which aim to obtain an even spread of goal scorers in Australian Rules football. The method developed in this investigation could be used to quantify the importance of individual contributions to overall team performance in team sports.  相似文献   

19.
以对第八套广播体操比赛动作的训练经验 ,分析了比赛动作与日常做广播体操动作的不同点 ,以及训练比赛动作要注意的几个方面 ,提出了高质量的比赛动作对平时的广播体操锻炼活动有积极的引导和示范作用 ,可以提高群众做好广播体操的自我要求。  相似文献   

20.
Abstract

The aims of this study were to investigate the energy build-up and dissipation mechanisms associated with using an arm swing in submaximal and maximal vertical jumping and to establish the energy benefit of this arm swing. Twenty adult males were asked to perform a series of submaximal and maximal vertical jumps while using an arm swing. Force, motion and electromyographic data were recorded during each performance and used to compute a range of kinematic and kinetic variables, including ankle, knee, hip, shoulder and elbow joint powers and work done. It was found that the energy benefit of using an arm swing appears to be closely related to the maximum kinetic energy of the arms during their downswing, and increases as jump height increases. As jump height increases, energy in the arms is built up by a greater range of motion at the shoulder and greater effort of the shoulder and elbow muscles but, as jump height approaches maximum, these sources are supplemented by energy supplied by the trunk due to its earlier extension in the movement. The kinetic energy developed by the arms is used to increase their potential energy at take-off but also to store and return energy from the lower limbs and to “pull” on the rest of the body. These latter two mechanisms become more important as jump height increases with the pull being the more important of the two. We conclude that an arm swing contributes to jump performance in submaximal as well as maximal jumping but the energy generation and dissipation sources change as performance approaches maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号