首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to determine the relationship between force and velocity parameters during a specific multi-articular upper limb movement – namely, hand rim propulsion on a wheelchair ergometer. Seventeen healthy able-bodied females performed nine maximal sprints of 8?s duration with friction torques varying from 0 to 4?N?·?m. The wheelchair ergometer system allows measurement of forces exerted on the wheels and linear velocity of the wheel at 100 Hz. These data were averaged for the duration of each arm cycle. Peak force and the corresponding maximal velocity were determined during three consecutive arm cycles for each sprint condition. Individual force–velocity relationships were established for peak force and velocity using data for the nine sprints. In line with the results of previous studies on leg cycling or arm cranking, the force–velocity relationship was linear in all participants (r?=??0.798 to ?0.983, P?<0.01). The maximal power output (mean 1.28?W?·?kg?1) and the corresponding optimal velocity (1.49?m?·?s?1) and optimal force (52.3?N) calculated from the individual force–velocity regression were comparable with values reported in the literature during 20 or 30?s wheelchair sprints, but lower than those obtained during maximal arm cranking. A positive linear relationship (r?=?0.678, P?<0.01) was found between maximal power and optimal velocity. Our findings suggest that although absolute values of force, velocity and power depend on the type of movement, the force–velocity relationship obtained in multi-articular limb action is similar to that obtained in wheelchair locomotion, cycling and arm cranking.  相似文献   

2.
An awareness of sex differences in gait can be beneficial for detecting the early stages of gait abnormalities that may lead to pathology. The same may be true for wheelchair propulsion. The aim of this study was to determine the effect of sex on wheelchair biomechanics and mechanical efficiency in novice young able-bodied wheelchair propulsion. Thirty men and 30 women received 12 min of familiarisation training. Subsequently, they performed two 10-m propulsion tests to evaluate comfortable speed (CS). Additionally, they performed a 4-min submaximal propulsion test on a treadmill at CS, 125% and 145% of CS. Propulsion kinetics (via Smartwheel) and oxygen uptake were continuously measured in all tests and were used to determine gross mechanical efficiency (GE), net efficiency (NE) and fraction of effective force (FEF). Ratings of perceived exertion (RPE) were assessed directly after each trial. Results indicated that CS for men was faster (0.98?±?0.24?m/s) compared to women (0.71?±?0.18?m/s). A lower GE was found in women compared to men. Push percentage, push angle and local RPE were different across the three speeds and between men and women. NE and FEF were not different between groups. Thus, even though their CS was lower, women demonstrated a higher locally perceived exertion than men. The results suggest sex differences in propulsion characteristics and GE. These insights may aid in optimising wheelchair propulsion through proper training and advice to prevent injuries and improve performance. This is relevant in stimulating an active lifestyle for those with a disability.  相似文献   

3.
Running downhill, in comparison to running on the flat, appears to involve an exaggerated stretch-shortening cycle (SSC) due to greater impact loads and higher vertical velocity on landing, whilst also incurring a lower metabolic cost. Therefore, downhill running could facilitate higher volumes of training at higher speeds whilst performing an exaggerated SSC, potentially inducing favourable adaptations in running mechanics and running economy (RE). This investigation assessed the efficacy of a supplementary 8-week programme of downhill running as a means of enhancing RE in well-trained distance runners. Nineteen athletes completed supplementary downhill (?5% gradient; n?=?10) or flat (n?=?9) run training twice a week for 8 weeks within their habitual training. Participants trained at a standardised intensity based on the velocity of lactate turnpoint (vLTP), with training volume increased incrementally between weeks. Changes in energy cost of running (EC) and vLTP were assessed on both flat and downhill gradients, in addition to maximal oxygen uptake (?O2max). No changes in EC were observed during flat running following downhill (1.22?±?0.09 vs 1.20?±?0.07?Kcal?kg?1?km?1, P?=?.41) or flat run training (1.21?±?0.13 vs 1.19?±?0.12?Kcal?kg?1?km?1). Moreover, no changes in EC during downhill running were observed in either condition (P?>?.23). vLTP increased following both downhill (16.5?±?0.7 vs 16.9?±?0.6?km?h?1 , P?=?.05) and flat run training (16.9?±?0.7 vs 17.2?±?1.0?km?h?1, P?=?.05), though no differences in responses were observed between groups (P?=?.53). Therefore, a short programme of supplementary downhill run training does not appear to enhance RE in already well-trained individuals.  相似文献   

4.
Abstract

The purpose of this study was to compare the physiological responses of Nordic walking on a specially designed treadmill and Nordic walking on a level over-ground surface. Thirteen participants completed three 1-h Nordic walking training sessions. Following the training sessions, each participant performed two 1600-m over-ground Nordic walking trials at a self-selected pace. Each participant then completed two 1600-m Nordic walking treadmill trials on a Hammer Nordic Walking XTR Treadmill®, at the mean walking speed of their two over-ground Nordic walking trials. Breath-by-breath analysis of oxygen uptake ([Vdot]O2) and heart rate was performed during each trial. Caloric expenditure was calculated using the [Vdot]O2. Rating of perceived exertion (RPE) was assessed at the end of each trial. We found no significant differences in physiological variables collected during the two over-ground Nordic walking trials or the two treadmill Nordic walking trials. Mean walking speed was 106.96±11.49 m · min?1. Mean heart rate during treadmill walking (99±13 beats · min?1) was 22% lower than that during the over-ground condition (126±17 beats · min?1). Mean [Vdot]O2 and mean caloric expenditure were also lower during treadmill walking (15.18±3.81 ml · min?1 · kg?1, 0.08±0.02 kcal · min?1 · kg?1) than over-ground walking (24.16±4.89 ml · min?1 · kg?1, 0.12±0.02 kcal · min?1 · kg?1). Analysis of variance demonstrated that all variables were significantly higher during over-ground Nordic walking (P<0.001). A Mann-Whitney U-test demonstrated that the RPE for over-ground Nordic walking was greater than that for treadmill Nordic walking (P=0.02). Thus over-ground Nordic walking created a greater physiological stress than treadmill Nordic walking performed at the same speed and distance. The reason for this difference may have been the relatively narrow walking and poling decks on the treadmill, which made it difficult for the participants to place their poles correctly and maintain a consistent walking pattern. This would decrease the contribution of the arm muscles to overall oxygen consumption. In conclusion, the Hammer Nordic Walking XTR Treadmill® does not replicate the physiological stress of over-ground Nordic walking. Increasing the width of the decks could eliminate the discrepancy.  相似文献   

5.
Abstract

The purpose of the present study was to determine the effects of 10-in [025–m] versus 16-in [0.41-m] wheelchair handrims on cardiorespiratory and psychophysiological exercise responses during wheelchair propulsion at selected velocities. Fifteen male paraplegics (27.0 ± 5.5 yrs) performed three discontinuous exercise tests (ACE = arm crank ergometer; WERG = wheelchair roller ergometer) and two 1600-m performance-based track trials (TRACK) under simulated race conditions. There were no significant differences in HR, VO2, VE, HLa, or category-ratio ratings of perceived exertion (RPE) using different handrims during wheelchair propulsion at 4 km-h1. In contrast, at 8 km-h?1 subjects demonstrated a 13% lower steady state VO2 (p < .05) using the 10-in handrims, coincident with a 23% lower VE Steady state HR during WERG at 8 km-h?1 using the 10-in (124.4 ± 39 b.min?1) or 16-in (130.6 ± 4.6 b.min?1) handrims were not significantly different. There were also no significant differences between ACE or WERG conditions during maximal effort for VO2 or VE. However, HRpeak during ACE was 7% higher than HRpeak during WERG16 (183 ± 15 b.min?1 vs. 171 ± 12 b.min?1, p < .05), and whole blood HLa during ACE was also significantly higher (by 2.3-2.5 mmol; p < .05) compared to WERG. There were no significant differences for HR, performance time, or RPE between trials using different handrim diameters during the 1600-m event. In contrast, HLa was significantly lower using smaller handrims (9.9 mmol) compared with larger handrims (11.3 mmol), paralleling a similar difference in the laboratory. Although these data demonstrated few significant differences of physiologic responses between trials using different handrims, there was a tendency for a lower metabolic stress using the smaller handrims.  相似文献   

6.
Abstract

The aims of this study were two-fold: (1) to consider the criterion-related validity of the multi-stage fitness test (MSFT) by comparing the predicted maximal oxygen uptake ([Vdot]O2max) and distance travelled with peak oxygen uptake ([Vdot]O2peak) measured using a wheelchair ergometer (n = 24); and (2) to assess the reliability of the MSFT in a sub-sample of wheelchair athletes (n = 10) measured on two occasions. Twenty-four trained male wheelchair basketball players (mean age 29 years, s = 6) took part in the study. All participants performed a continuous incremental wheelchair ergometer test to volitional exhaustion to determine [Vdot]O2peak, and the MSFT on an indoor wooden basketball court. Mean ergometer [Vdot]O2peak was 2.66 litres · min?1 (s = 0.49) and peak heart rate was 188 beats · min?1 (s = 10). The group mean MSFT distance travelled was 2056 m (s = 272) and mean peak heart rate was 186 beats · min?1 (s = 11). Low to moderate correlations (ρ = 0.39 to 0.58; 95% confidence interval [CI]: ?0.02 to 0.69 and 0.23 to 0.80) were found between distance travelled in the MSFT and different expressions of wheelchair ergometer [Vdot]O2peak. There was a mean bias of ?1.9 beats · min?1 (95% CI: ?5.9 to 2.0) and standard error of measurement of 6.6 beats · min?1 (95% CI: 5.4 to 8.8) between the ergometer and MSFT peak heart rates. A similar comparison of ergometer and predicted MSFT [Vdot]O2peak values revealed a large mean systematic bias of 15.3 ml · kg?1 · min?1 (95% CI: 13.2 to 17.4) and standard error of measurement of 3.5 ml · kg?1 · min?1 (95% CI: 2.8 to 4.6). Small standard errors of measurement for MSFT distance travelled (86 m; 95% CI: 59 to 157) and MSFT peak heart rate (2.4 beats · min?1; 95% CI: 1.7 to 4.5) suggest that these variables can be measured reliably. The results suggest that the multi-stage fitness test provides reliable data with this population, but does not fully reflect the aerobic capacity of wheelchair athletes directly.  相似文献   

7.
Wearable activity trackers have become popular for tracking individual’s daily physical activity, but little information is available to substantiate the validity of these devices in step counts. Thirty-five healthy individuals completed three conditions of activity tracker measurement: walking/jogging on a treadmill, walking over-ground on an indoor track, and a 24-hour free-living condition. Participants wore 10 activity trackers at the same time for both treadmill and over-ground protocol. Of these 10 activity trackers three were randomly given for 24-hour free-living condition. Correlations of steps measured to steps observed were r?=?0.84 and r?=?0.67 on a treadmill and over-ground protocol, respectively. The mean MAPE (mean absolute percentage error) score for all devices and speeds on a treadmill was 8.2% against manually counted steps. The MAPE value was higher for over-ground walking (9.9%) and even higher for the 24-hour free-living period (18.48%) on step counts. Equivalence testing for step count measurement resulted in a significant level within ±5% for the Fitbit Zip, Withings Pulse, and Jawbone UP24 and within ±10% for the Basis B1 band, Garmin VivoFit, and SenseWear Armband Mini. The results show that the Fitbit Zip and Withings Pulse provided the most accurate measures of step count under all three different conditions (i.e. treadmill, over-ground, and 24-hour condition), and considerable variability in accuracy across monitors and also by speeds and conditions.  相似文献   

8.
Abstract

The aim of the current study was to investigate the validity and reliability of a radio frequency-based system for accurately tracking athlete movement within wheelchair court sports. Four wheelchair-specific tests were devised to assess the system during (i) static measurements; (ii) incremental fixed speeds; (iii) peak speeds; and (iv) multidirectional movements. During each test, three sampling frequencies (4, 8 and 16 Hz) were compared to a criterion method for distance, mean and peak speeds. Absolute static error remained between 0.19 and 0.32 m across the session. Distance values (test (ii)) showed greatest relative error in 4 Hz tags (1.3%), with significantly lower errors seen in higher frequency tags (<1.0%). Relative peak speed errors of <2.0% (test (iii)) were revealed across all sampling frequencies in relation to the criterion (4.00 ± 0.09 m · sˉ1). Results showed 8 and 16 Hz sampling frequencies displayed the closest-to-criterion values, whilst intra-tag reliability never exceeded 2.0% coefficient of variation (% CV) during peak speed detection. Minimal relative distance errors (<0.2%) were also seen across sampling frequencies (test (iv)). To conclude, the indoor tracking system is deemed an acceptable tool for tracking wheelchair court match play using a tag frequency of 8 or 16 Hz.  相似文献   

9.
The purpose of the present study was to determine the effects of 10-in [0.25-m] versus 16-in [0.41-m] wheelchair handrims on cardiorespiratory and psychophysiological exercise responses during wheelchair propulsion at selected velocities. Fifteen male paraplegics (27.0 +/- 5.5 yrs) performed three discontinuous exercise tests (ACE = arm crank ergometer; WERG = wheelchair roller ergometer) and two 1600-m performance-based track trials (TRACK) under simulated race conditions. There were no significant differences in HR, VO2, VE, HLa, or category-ratio ratings of perceived exertion (RPE) using different handrims during wheelchair propulsion at 4 km.h-1. In contrast, at 8 km.h-1 subjects demonstrated a 13% lower steady state VO2 (p less than .05) using the 10-in handrims, coincident with a 23% lower VE. Steady state HR during WERG at 8 km.h-1 using the 10-in (124.4 +/- 3.9 b.min-1) or 16-in (130.6 +/- 4.6 b.min-1) handrims were not significantly different. There were also no significant differences between ACE or WERG conditions during maximal effort for VO2 or VE. However, HRpeak during ACE was 7% higher than HRpeak during WERG16 (183 +/- 15 b.min-1 vs. 171 +/- 12 b.min-1, p less than .05), and whole blood HLa during ACE was also significantly higher (by 2.3-2.5 mmol; p less than .05) compared to WERG. There were no significant differences for HR, performance time, or RPE between trials using different handrim diameters during the 1600-m event.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Assessment of movement logging devices is required to ensure suitability for the determination of court-movement variables during competitive sports performance and allow for practical recommendations to be made. Hence, the purpose was to examine wheelchair tennis speed profiles to assess data logger device applicability for court-movement quantification, with match play stratified by rank (HIGH, LOW), sex (male, female) and format (singles, doubles). Thirty-one wheelchair tennis players were monitored during competitive match play. Mixed sampling was employed (male = 23, female = 8). Friedman’s test with Wilcoxon signed-rank post hoc testing revealed a higher percentage of time below 2.5 m · s?1 [<2.5 vs. ≥2.5 m · s?1: 89.4 (5.0) vs. 1.2 (3.5)%, = ?4.860, < 0.0005, r = 0.87] with the remaining time [9.0 (4.9%)] spent stationary. LOW-ranked players were stationary for longer than HIGH-ranked counterparts [12.6 (8.7) vs. 8.2 (5.1)%, = 30.000, = 0.011, r = 0.46] with more time at low propulsion speeds (<1.0 m · s?1). HIGH-ranked and doubles players spent more time in higher speed zones than respective counterparts. Females spent more time in the 1.0–1.49 m · s?1 zone (= 48.000, P = 0.047, r = 0.36). Regardless of rank, sex or format, propulsion speeds during wheelchair tennis match play are consistent with data logger accuracy. Hence, data logging is appropriate for court-movement quantification.  相似文献   

11.
This study aimed to quantify the intra-individual reliability of a number of physiological variables in a group of national and international young distance runners. Sixteen (8 male, 8 female) participants (16.7?±?1.4 years) performed a submaximal incremental running assessment followed by a maximal running test, on two occasions separated by no more than seven days. Maximal oxygen uptake (V?O2max), speed at V?O2max (km?h?1), running economy and speed and heart rate (HR) at fixed blood lactate concentrations were determined. V?O2max and running economy were scaled for differences in body mass using a power exponent derived from a larger cohort of young runners (n?=?42). Running economy was expressed as oxygen cost and energy cost at the speed associated with lactate turnpoint (LTP) and the two speeds prior to LTP. Results of analysis of variance revealed an absence of systematic bias between trials. Reliability indices showed a high level of reproducibility across all parameters (typical error [TE] ≤2%; intra-class correlation coefficient >0.8; effect size <0.6). Expressing running economy as energy cost appears to provide superior reliability than using oxygen cost (TE ~1.5% vs. ~2%). Blood lactate and HR were liable to daily fluctuations of 0.14–0.22?mmol?L?1 and 4–5?beats?min?1 respectively. The minimum detectable change values (95% confidence) for each parameter are also reported. Exercise physiologists can be confident that measurement of important physiological determinants of distance running performance are highly reproducible in elite junior runners.  相似文献   

12.
The aims of this study were: (1) to identify the exercise intensity that corresponds to the maximal lactate steady state in adolescent endurance-trained runners; (2) to identify any differences between the sexes; and (3) to compare the maximal lactate steady state with commonly cited fixed blood lactate reference parameters. Sixteen boys and nine girls volunteered to participate in the study. They were first tested using a stepwise incremental treadmill protocol to establish the blood lactate profile and peak oxygen uptake ([Vdot]O2). Running speeds corresponding to fixed whole blood lactate concentrations of 2.0, 2.5 and 4.0?mmol?·?l?1 were calculated using linear interpolation. The maximal lactate steady state was determined from four separate 20-min constant-speed treadmill runs. The maximal lactate steady state was defined as the fastest running speed, to the nearest 0.5?km?·?h?1, where the change in blood lactate concentration between 10 and 20?min was?<0.5?mmol?·?l?1. Although the boys had to run faster than the girls to elicit the maximal lactate steady state (15.7 vs 14.3?km?·?h?1, P?<0.01), once the data were expressed relative to percent peak [Vdot]O2 (85 and 85%, respectively) and percent peak heart rate (92 and 94%, respectively), there were no differences between the sexes (P?>0.05). The running speed and percent peak [Vdot]O2 at the maximal lactate steady state were not different to those corresponding to the fixed blood lactate concentrations of 2.0 and 2.5?mmol?·?l?1 (P?>0.05), but were both lower than those at the 4.0?mmol?·?l?1 concentration (P?<0.05). In conclusion, the maximal lactate steady state corresponded to a similar relative exercise intensity as that reported in adult athletes. The running speed, percent peak [Vdot]O2 and percent peak heart rate at the maximal lactate steady state are approximated by the fixed blood lactate concentration of 2.5?mmol?·?l?1 measured during an incremental treadmill test in boys and girls.  相似文献   

13.
The effects of training with overweight and underweight cricket balls on fast-bowling speed and accuracy were investigated in senior club cricket bowlers randomly assigned to either a traditional (n = 9) or modified-implement training (n = 7) group. Both groups performed bowling training three times a week for 10 weeks. The traditional training group bowled only regulation cricket balls (156 g), whereas the modified-implement training group bowled a combination of overweight (161?-?181 g), underweight (151?-?131 g) and regulation cricket balls. A radar gun measured the speed of 18 consecutive deliveries for each bowler before, during and after the training period. Video recordings of the deliveries were also analysed to determine bowling accuracy in terms of first-bounce distance from the stumps. Bowling speed, which was initially 108?±?5 km?·?h?1 (mean?±?standard deviation), increased in the modified-implement training group by 4.0 km?·?h?1 and in the traditional training group by 1.3 km?·?h?1 (difference, 2.7 km?·?h?1; 90% confidence limits, 1.2 to 4.2 km?·?h?1). For a minimum worthwhile change of 5 km?·?h?1, the chances that the true effect on bowling speed was practically beneficial/trivial/harmful were 1.0/99/<?0.1%. For bowling accuracy, the chances were 1/48/51%. This modified-implement training programme is not a useful training strategy for club cricketers.  相似文献   

14.
Abstract

A comparative evaluation of the ability of activity monitors to predict energy expenditure (EE) is necessary to aid in the investigation of the effect of EE on health. The purpose of this study was to validate and compare the RT3, the SWA and the IDEEA at measuring EE in adults and children. Twenty-six adults and 22 children completed a resting metabolic rate (RMR) test and performed four treadmill activities at 3 km.h?1, 6 km.h?1, 6 km.h?1 at a 10% incline, 9 km.h?1. EE was assessed throughout the protocol by the RT3, the SWA and the IDEEA. Indirect calorimetry (IC) was used as a criterion measure of EE against which each monitor was compared. Mean bias was assessed by subtracting EE from IC from EE from each monitor for each activity. Limit of agreement plots were used to assess the agreement between each monitor and IC. Limits of agreement for resting EE were narrowest for the RT3 for adults and children. Although the IDEEA displayed the smallest mean bias between measures at 3 km.h?1, 6 km.h?1 and 9 km.h?1 in adults and children, the SWA agreed closest with IC at 6 km.h?1, 6 km.h?1 at a 10% incline and 9 km.h?1. Limits of agreement were closest for the SWA at 9 km.h?1 in adults representing 42% of the overall mean EE. Although the RT3 provided the best estimate of resting EE in adults and children, the SWA provided the most accurate estimate of EE across a range of physical activity intensities.  相似文献   

15.
This study examined the validity of the Actical accelerometer step count and energy expenditure (EE) functions in healthy young adults. Forty-three participants participated in study 1. Actical step counts were compared to actual steps taken during a 200 m walk around an indoor track at self-selected pace and during treadmill walking at different speeds (0.894, 1.56 and 2.01 m · s–1) for 5 min. The Actical was also compared to three pedometers. For study 2, 15 participants from study 1 walked on a treadmill at their predetermined self-selected pace for 15 min. Actical EE was compared to EE measured by indirect calorimetry. One-way analysis of variance and t-tests were used to examine differences. There were no statistical difference between Actical steps and actual steps in self-selected pace walking and during treadmill walking at moderate and fast speeds. During treadmill walking at slow speed, the Actical step counts significantly under predicted actual steps taken. For study 2, there was no statistical difference between measured EE and Actical-recorded EE. The Actical provides valid estimates of step counts at self-selected pace and walking at constant speeds of 1.56 and 2.01 m · s–1. The Actical underestimates EE of walking at constants speeds ≥1.38 m · s–1.  相似文献   

16.
The primary aim of this study was to determine whether variations in rebound speed and accuracy of a tennis ball could be detected during game-simulated conditions when using three rackets strung with three string tensions. Tennis balls were projected from a ball machine towards participants who attempted to stroke the ball cross-court into the opposing singles court. The rebound speed of each impact was measured using a radar gun located behind the baseline of the court. An observer also recorded the number of balls landing in, long, wide and in the net. It was found that rebound speeds for males (110.1?±?10.2?km?·?h?1; mean?±?s) were slightly higher than those of females (103.6?±?8.6?km?·?h?1; P?<?0.05) and that low string tensions (180?N) produced greater rebound speeds (108.1?±?9.9?km?·?h?1) than high string tensions (280?N, 105.3?±?9.6?km?·?h?1; P?<?0.05). This finding is in line with laboratory results and theoretical predictions of other researchers. With respect to accuracy, the type of error made was significantly influenced by the string tension (P?<?0.05). This was particularly evident when considering whether the ball travelled long or landed in the net. High string tension was more likely to result in a net error, whereas low string tension was more likely to result in the ball travelling long. It was concluded that both gender and the string tension influence the speed and accuracy of the tennis ball.  相似文献   

17.
The Zephyr? BioHarness? (Zephyr Technology, Auckland, New Zealand) is a wireless physiological monitoring system that has the ability to measure respiratory rate unobtrusively. However, the ability of the BioHarness? to accurately and reproducibly determine respiratory rate across a range of intensities is currently unknown. The aim of this study was to determine the reliability and validity of the BioHarness? to measure respiratory rate. Twelve physically active participants attended the laboratory on two separate occasions to perform an incremental treadmill test to volitional exhaustion. Respiratory rate (br.min?1) was measured continuously and simultaneously during both trials using both a Metamax 3b online gas-analysis system (Cortex, Leipzig, Germany) and the BioHarness?. The mean respiratory rate measured by the Metamax 3b and BioHarness? did not differ statistically (p < .05) for most speeds, except for 70% of peak treadmill speed (p = .039). Mean absolute differences were small (2 to 3 br.min?1; typical error = 4.4%–8.7%). The typical errors for the test 1 versus the test 2 comparisons for respiratory rate ranged from 1.4 to 2.8 br.min?1 (typical error % = 4.3–7.3) for the BioHarness?. There were no significant differences between devices for the absolute respiratory rate, speed, and percent of respiratory rate maximum at the respiratory breakpoint (p > .05). The BioHarness? is a valid and reliable device for determining respiratory rate and the respiratory breakpoint during exercise of varying intensity.  相似文献   

18.
Abstract

The aim of this study was to evaluate the utility of the RT3 accelerometer in young children, compare its accuracy with heart rate monitoring, and develop an equation to predict energy expenditure from RT3 output. Forty-two volunteers (mean age 12.2 years, s = 1.1) exercised at two horizontal and graded walking speeds (4 and 6 km · h?1, 0% grade and 6% grade), and one horizontal running speed (8 km · h?1, 0% grade), on a treadmill. Energy expenditure and oxygen consumption ([Vdot]O2) served as the criterion measures. Comparison of RT3 estimates (counts and energy expenditure) demonstrated significant differences at 4, 6, and 8 km · h?1 on level ground (P < 0.01), while no significant differences were noted between horizontal and graded walking at 4 and 6 km · h?1. Correlation and regression analyses indicated no advantage of vector magnitude over the vertical plane (X) alone. A strong relationship between RT3 estimates and indirect calorimetry across all speeds was obtained (r = 0.633–0.850, P < 0.01). A child-specific prediction equation (adjusted R 2 = 0.753) was derived and cross-validated that offered a valid energy expenditure estimate for walking/running activities. Despite recognized limitations, the RT3 may be a useful tool for the assessment of children's physical activity during walking and running.  相似文献   

19.
The aim of the present study was to evaluate the effects of a 12-week home-based strength, explosive and plyometric (SEP) training on the cost of running (Cr) in well-trained ultra-marathoners and to assess the main mechanical parameters affecting changes in Cr. Twenty-five male runners (38.2?±?7.1 years; body mass index: 23.0?±?1.1?kg·m?2; V˙O2max: 55.4?±?4.0 mlO2·kg?1·min?1) were divided into an exercise (EG?=?13) and control group (CG?=?12). Before and after a 12-week SEP training, Cr, spring-mass model parameters at four speeds (8, 10, 12, 14?km·h?1) were calculated and maximal muscle power (MMP) of the lower limbs was measured. In EG, Cr decreased significantly (p?<?.05) at all tested running speeds (?6.4?±?6.5% at 8?km·h?1; ?3.5?±?5.3% at 10?km·h?1; ?4.0?±?5.5% at 12?km·h?1; ?3.2?±?4.5% at 14?km·h?1), contact time (tc) increased at 8, 10 and 12?km·h?1 by mean +4.4?±?0.1% and ta decreased by ?25.6?±?0.1% at 8?km·h?1 (p?<?.05). Further, inverse relationships between changes in Cr and MMP at 10 (p?=?.013; r?=??0.67) and 12?km·h?1 (p?<?.001; r?=??0.86) were shown. Conversely, no differences were detected in the CG in any of the studied parameters. Thus, 12-week SEP training programme lower the Cr in well-trained ultra-marathoners at submaximal speeds. Increased tc and an inverse relationship between changes in Cr and changes in MMP could be in part explain the decreased Cr. Thus, adding at least three sessions per week of SEP exercises in the normal endurance-training programme may decrease the Cr.  相似文献   

20.
ABSTRACT

Purpose: The purpose of this study was to investigate the differences in metabolic responses between the track and the treadmill (1% inclination) running. The latter is recommended for use in laboratory settings to mimic outdoor running. Method: Seventeen male endurance athletes (mean 25.8, s = 3.8 years) performed 4-min running bouts on an indoor track and the treadmill. Results: At all speeds (11, 13, and 15 km·h?1) athletes showed better economy on the track running compared to the treadmill expressed as oxygen (7.9%, 5.2%, and 2.8%) and caloric (7.0%, 5.3%, and 2.6%) unit cost. Rating of perceived exertion was evaluated substantially higher at all speeds on the treadmill (F(1,16) = 31.45, p < .001, η2p = .663) compared to running on the track. Participants presented lower heart rate (F(1,16) = 13.74, p = .002, η2= .462) on the track at the speed of 11 and 13 km·h?1 compared to the treadmill, but not at 15 km·h?1 (p = .021). Conclusions: We conclude that constant inclination (i.e.. 1%) during the treadmill test might not be suitable to reproduce comparable effort to running on the track; rather, there is an optimal treadmill inclination for different intensities to reproduce similar effort compared to the track running.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号