首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Best practice for improving strength and power through resistance strength training has been the subject of much research and subsequent conjecture. Much of the conjecture can be attributed to methodological discrepancies. The type of dynamometry used in testing, the training experience of research participants, the specific technique employed in a lift, and the methods of collection and calculation all impact on the final variables of interest. This review examines contraction force specificity by first addressing the methodological issues surrounding our interpretation of the results. Then we address the kinematics and kinetics associated with single and multiple repetitions in relation to the development of strength, power, and functional performance. This discussion provides the delimitations for analysis of subsequent training studies. Finally, recommendations are formulated with the aim of assisting assessment and training practice as well as providing directions for future research. The results of this review suggest that the enhancements in performance resulting from resistance training are context specific in experienced resistance-trained participants. Thus, specific conditioning could be required to achieve improvements in functional performance in this group.  相似文献   

2.
The aim of this study was to compute a swimming performance confirmatory model based on biomechanical parameters. The sample included 100 young swimmers (overall: 12.3?±?0.74 years; 49 boys: 12.5?±?0.76 years; 51 girls: 12.2?±?0.71 years; both genders in Tanner stages 1–2 by self-report) participating on a regular basis in regional and national-level events. The 100?m freestyle event was chosen as the performance indicator. Anthropometric (arm span), strength (throwing velocity), power output (power to overcome drag), kinematic (swimming velocity) and efficiency (propelling efficiency) parameters were measured and included in the model. The path-flow analysis procedure was used to design and compute the model. The anthropometric parameter (arm span) was excluded in the final model, increasing its goodness-of-fit. The final model included the throw velocity, power output, swimming velocity and propelling efficiency. All links were significant between the parameters included, but the throw velocity–power output. The final model was explained by 69% presenting a reasonable adjustment (model's goodness-of-fit; x2/df?=?3.89). This model shows that strength and power output parameters do play a mediator and meaningful role in the young swimmers’ performance.  相似文献   

3.
As hill jumps are very time-consuming, ski jumping athletes often perform various imitation jumps during training. The performed jumps should be similar to hill jumps, but a direct comparison of the kinetic and kinematic parameters has not been performed yet. Therefore, this study aimed to correlate 11 common parameters during hill jumps (Oberstdorf Germany), squat jumps (wearing indoor shoes), and various imitation jumps (rolling 4°, rolling flat, static; jumping equipment or indoor shoes) on a custom-built instrumented vehicle with a catch by the coach. During the performed jumps, force and video data of the take-off of 10 athletes were measured. The imitation and squat jumps were then ranked. The main difference between the hill jumps and the imitation and squat jumps is the higher maximal force loading rate during the hill jumps. Imitation jumps performed on a rolling platform, on flat ground were the most similar to hill jumps in terms of the force–time, and leg joint kinematic properties. Thus, non-hill jumps with a technical focus should be performed from a rolling platform with a flat inrun with normal indoor shoes or jumping equipment, and high normal force loading rates should be the main focus of imitation training.  相似文献   

4.
ABSTRACT

A common practice in resistance training is to perform sets of exercises at, or close to failure, which can alter movement dynamics. This study examined ankle, knee, hip, and lumbo-pelvis dynamics during the barbell back squat under a moderate-heavy load (80% of 1 repetition maximum (1RM)) when performed to failure. Eleven resistance trained males performed three sets to volitional failure. Sagittal plane movement dynamics at the ankle, knee, hip, and lumbo-pelvis were examined; specifically, joint moments, joint angles, joint angular velocity, and joint power. The second repetition of the first set and the final repetition of the third set were compared. Results showed that while the joint movements slowed (p < 0.05), the joint ranges of motion were not altered There were significant changes in most mean joint moments (p < 0.05), indicating altered joint loading. The knee moment decreased while the hip and lumbo-pelvis moments underwent compensatory increases. At the knee and hip, there were significant decreases (p < 0.05) in concentric power output (p < 0.05). Whilst performing multiple sets to failure altered some joint kinetics, the comparable findings in joint range ofmotion suggest that technique was not altered. Therefore, skilled individuals appear to maintain technique when performing to failure.  相似文献   

5.
Abstract

The aims of this study were to investigate the energy build-up and dissipation mechanisms associated with using an arm swing in submaximal and maximal vertical jumping and to establish the energy benefit of this arm swing. Twenty adult males were asked to perform a series of submaximal and maximal vertical jumps while using an arm swing. Force, motion and electromyographic data were recorded during each performance and used to compute a range of kinematic and kinetic variables, including ankle, knee, hip, shoulder and elbow joint powers and work done. It was found that the energy benefit of using an arm swing appears to be closely related to the maximum kinetic energy of the arms during their downswing, and increases as jump height increases. As jump height increases, energy in the arms is built up by a greater range of motion at the shoulder and greater effort of the shoulder and elbow muscles but, as jump height approaches maximum, these sources are supplemented by energy supplied by the trunk due to its earlier extension in the movement. The kinetic energy developed by the arms is used to increase their potential energy at take-off but also to store and return energy from the lower limbs and to “pull” on the rest of the body. These latter two mechanisms become more important as jump height increases with the pull being the more important of the two. We conclude that an arm swing contributes to jump performance in submaximal as well as maximal jumping but the energy generation and dissipation sources change as performance approaches maximum.  相似文献   

6.
This study aimed to identify the continuous ground reaction force (GRF) features which contribute to higher levels of block phase performance. Twenty-three sprint-trained athletes completed starts from their preferred settings during which GRFs were recorded separately under each block. Continuous features of the magnitude and direction of the resultant GRF signals which explained 90% of the variation between the sprinters were identified. Each sprinter’s coefficient score for these continuous features was then input to a linear regression model to predict block phase performance (normalised external power). Four significant (p < 0.05) predictor features associated with GRF magnitude were identified; there were none associated with GRF direction. A feature associated with greater rear block GRF magnitudes from the onset of the push was the most important predictor (β = 1.185), followed by greater front block GRF magnitudes for the final three-quarters of the push (β = 0.791). Features which included a later rear block exit (β = 0.254) and greater front leg GRF magnitudes during the mid-push phase (β = 0.224) were also significant predictors. Sprint practitioners are encouraged, where possible, to consider the continuous magnitude of the GRFs produced throughout the block phase in addition to selected discrete values.  相似文献   

7.
The aim of this study was to analyse the significance of various biomechanical parameters in swim start performance for the grab and track start techniques. To do so, structural equation models were analysed, incorporating measurements for the take-off phase, flight phase and entry phase. Forty-six elite German swimmers (18 female and 28 male; age: 20.1 ± 4.2 yrs; PB (100 m Freestyle): 53.6 ± 2.9 s) participated in the study. Their swim start performance was examined within a 25-m sprint test. Structural equation modelling was conducted in separate models for the block time, flight time and water time and in a combined model for swim start time. Our main finding was that swim start time is predominantly related to water time and determined to a lesser extent by block time and flight time. We conclude that more emphasis should be given to the water immersion behaviour and the gliding phase when analysing swim start performance. Furthermore, significant differences were found between the grab start and track techniques as regards the biomechanical parameters representing the take-off phase and water phase.  相似文献   

8.
本文采用高速摄影与三维测力同步的方法,对技巧女三膝抛直体后空翻两周下动作进行了定量测试,揭示了该动作的动力学和运动学特征,进而提出了完成该动作的最佳配合技术特点.  相似文献   

9.
Abstract

To determine if unilateral measures of muscle architecture in the rectus femoris (RF) and vastus lateralis (VL) were related to (and predictive of) sprinting speed and unilateral (and bilateral) force (FRC) and power (POW) during a 30 s maximal sprint on the Woodway Curve 3.0TM non-motorized treadmill (TM). Twenty-eight healthy, physically active men (n = 14) and women (n = 14) (age = 22.9 ± 2.4 years; body mass = 77.1 ± 16.2 kg; height = 171.6 ± 11.2 cm; body-fa t = 19.4 ± 8.1%) completed one familiarization and one 30-s maximal sprint on the TM to obtain maximal sprinting speed, POW and FRC. Muscle thickness (MT), cross-sectional area (CSA) and echo intensity (ECHO) of the RF and VL in the dominant (DOM; determined by unilateral sprinting power) and non-dominant (ND) legs were measured via ultrasound. Pearson correlations indicated several significant (p < 0.05) relationships between sprinting performance [POW (peak, DOM and ND), FRC (peak, DOM, ND) and sprinting time] and muscle architecture. Stepwise regression indicated that POWDOM was predictive of ipsilateral RF (MT and CSA) and VL (CSA and ECHO), while POWND was predictive of ipsilateral RF (MT and CSA) and VL (CSA); sprinting power/force asymmetry was not predictive of architecture asymmetry. Sprinting time was best predicted by peak power and peak force, though muscle quality (ECHO) and the bilateral percent difference in VL (CSA) were strong architectural predictors. Muscle architecture is related to (and predictive of) TM sprinting performance, while unilateral POW is predictive of ipsilateral architecture. However, the extent to which architecture and other factors (i.e. neuromuscular control and sprinting technique) affect TM performance remains unknown.  相似文献   

10.
Abstract

This study aimed to investigate the contributions of kinetic and kinematic parameters to inter-individual variation in countermovement jump (CMJ) performance. Two-dimensional kinematic data and ground reaction forces during a CMJ were recorded for 18 males of varying jumping experience. Ten kinetic and eight kinematic parameters were determined for each performance, describing peak lower-limb joint torques and powers, concentric knee extension rate of torque development and CMJ technique. Participants also completed a series of isometric knee extensions to measure the rate of torque development and peak torque. CMJ height ranged from 0.38 to 0.73 m (mean 0.55 ± 0.09 m). CMJ peak knee power, peak ankle power and take-off shoulder angle explained 74% of this observed variation. CMJ kinematic (58%) and CMJ kinetic (57%) parameters explained a much larger proportion of the jump height variation than the isometric parameters (18%), suggesting that coachable technique factors and the joint kinetics during the jump are important determinants of CMJ performance. Technique, specifically greater ankle plantar-flexion and shoulder flexion at take-off (together explaining 58% of the CMJ height variation), likely influences the extent to which maximal muscle capabilities can be utilised during the jump.  相似文献   

11.
This study determined whether backward grinding performance in America's Cup sailing could be improved using a training intervention to increase power capability in the upper-body pull movement. Fourteen elite male sailors (34.9 ± 5.9 years; 98.1 ± 14.4 kg; 186.6 ± 7.7 cm) were allocated into experimental (speed-focussed) and control groups. Grinding performance was assessed using a grinding ergometer and an instrumented Smith machine measured force, velocity and power during the bench pull exercise. Conventional training produced significant improvements in bench pull 1 RM (5.2 ± 4.0%; p = 0.016) and maximum force production (5.4 ± 4.0%; p = 0.014). Speed-focussed training improved maximum power (7.8 ± 4.9%; p = 0.009), power at 1RM (10.3 ± 8.9%; p = 0.019) and maximum velocity (8.4 ± 2.6%; p = 0.0002). Backward grinding performance showed greater improvements in the experimental group than the control group for moderate (+1.8%) and heavy load (+6.0%) grinding. Changes in maximum power output and power at 1 RM had large correlations (r = 0.56–0.61) with changes in both moderate and heavy load grinding performance. Time to peak force had the strongest relationship, explaining 70% of the change in heavy load grinding performance. Although the performance benefit was not entirely clear the likelihood of a detrimental effect was low ( < 5%) and therefore implementation could be recommended.  相似文献   

12.
In its last position stand about strength training, the American College of Sports Medicine recommends a rest interval (RI) between sets ranging between 1 and 3?min, varying in accordance with the objective. However, there is no consensus regarding the optimal recovery between sets, and most studies have investigated fixed intervals. Therefore, the aim of this study was to analyse the effects of fixed versus self-suggested RI between sets in lower and upper body exercises performance. Twenty-seven healthy subjects (26?±?1.5; 75?±?15?kg; 175?±?12?cm) were randomly assigned into two groups: G1: lower body exercises and G2: upper body exercises. Squat and leg press 1 repetition maximum (1RM) were tested for the G1 and bench press and biceps curl 1RM for G2. After the 1RM tests, both groups performed three sets to concentric failure with 75% of 1RM in combination with different RIs (2?min or self-suggested) on separate days and the exercises performance was evaluated by the number of repetitions. The results demonstrated no significant differences in the number of repetitions between 2?min and self-suggested RIs that presented similar reductions with the sets progression. It was also shown that the self-suggested RI spent less time recovering than the 2?min RI group on average. This suggests that for individuals with previous experience, the self-suggested RI can be an effective option when using workloads commonly prescribed aiming hypertrophy. Also, the self-suggested RI can reduce the total training session duration, which can be a more time-effective strategy.  相似文献   

13.
14.
This study examined performers' retrospective explanations of the relationship between anxiety symptoms, self-confidence, and performance. Interviews were used to determine how the presence of symptoms and the accompanying directional interpretation affected performance in six elite and six subelite swimmers. Causal networks revealed that perceived control was the moderatingfactor in the directional interpretation of anxiety and not the experience of anxiety symptoms alone. Symptoms perceived to be under control were interpreted to have facilitative consequences for performance; however, symptoms not under control were viewed as debilitative. Increases or decreases in self-confidence wereperceived to improve or lower performance. Findings reveal how cognitive and somatic information was processed, what strategies were adopted, and how this series of events related to performance.  相似文献   

15.
The purpose of this study was to examine the effects of external load on vertical ground reaction force, and linear and angular kinematics, during squats. Eight males aged 22.1?±?0.8 years performed maximal concentric squats using loads ranging from 7 to 70% of one-repetition maximum on a force plate while linear barbell velocity and the angular kinematics of the hip, knee and ankle were recorded. Maximum, average and angle-specific values were recorded. The ground reaction force ranged from 1.67?±?0.20 to 3.21?±?0.29 times body weight and increased significantly as external load increased (P?<?0.05). Bar linear velocity ranged from 0.54?±?0.11 to 2.50?±?0.50?m?·?s?1 and decreased significantly with increasing external load (P?<?0.05). Hip, knee and ankle angles at maximum ground reaction force were affected by external load (P?<?0.05). The force?–?barbell velocity curves were fitted using linear models with coefficients (r 2) ranging from 0.59 to 0.96. The results suggest that maximal force exertion during squat exercises is not achieved at the same position of the lower body as external load is increased. In contrast, joint velocity coordination does not change as load is increased. The force?–?velocity relationship was linear and independent from the set of data used for its determination.  相似文献   

16.
Abstract

The influence of speed on trunk exercise technique is poorly understood. The aim of this study was to analyse the effect of movement speed on the kinematics and kinetics of curl-up, sit-up and leg raising/lowering exercises. Seventeen healthy, recreationally trained individuals (13 females and 4 males) volunteered to participate in this study. Four different exercise cadences were analysed: 1 repetition/4 s, 1 repetition/2 s, 1 repetition/1.5 s and 1 repetition/1 s. The exercises were executed on a force plate and recorded by three cameras to conduct a 3D photogrammetric analysis. The cephalo-caudal displacement of the centre of pressure and range of motion (ROM) of six joints describing the trunk and hip movements were measured. As sit-up and curl-up speed increased, hip and knee ROM increased. Dorsal-lumbar and upper trunk ROM increased with speed in the curl-up. Faster cadence in the sit-up exercise had minimal effect on trunk ROM: only the upper trunk ROM decreased significantly. In the leg raising/lowering exercise there was a decrease in the pelvic tilt and hip ROM, and increased knee flexion ROM. During higher speed exercises, participants modified their technique to maintain the cadence. Thus, professionals would do well to monitor and control participants' technique during high-speed exercises to maintain performance specificity. Results also suggest division of speed into two cadence categories, to be used as a reference for prescribing exercise speed based on preferred outcome goals.  相似文献   

17.
18.
This study analysed the validity and reliability of a new optoelectronic device (Velowin) for the measurement of vertical displacement and velocity as well as to estimate force and mechanical power. Eleven trained males with Mean (SD) age = 27.4 (4.8) years, completed an incremental squat exercise test with 5 different loads (<30–90% of their 1?repetition maximum) while displacement and vertical velocity of the barbell were simultaneously measured using an integrated 3D system (3D motion capture system + force platform) and Velowin. Substantial to almost perfect correlation (concordance correlation coefficient = 0.75–0.96), root mean square error as coefficient of variation ±90% confidence interval ≤10% and good to excellent intraclass correlation coefficient = 0.84–0.99 were determined for all the variables. Passing and Bablock regression methods revealed no differences for average velocity. However, significant but consistent bias were determined for average or peak force and power while systematic and not proportional bias was found for displacement. In conclusion, Velowin, in holds of some potential advantages over traditionally used accelerometer or linear transducers, represents a valid and reliable alternative to monitor vertical displacement and velocity as well as to estimate average force and mechanical power during the squat exercise.  相似文献   

19.
ABSTRACT

Successful sprinting depends on covering a specific distance in the shortest time possible. Although external forces are key to sprinting, less consideration is given to the duration of force application, which influences the impulse generated. This study explored relationships between sprint performance measures and external kinetic and kinematic performance indicators. Data were collected from the initial acceleration, transition and maximal velocity phases of a sprint. Relationships were analysed between sprint performance measures and kinetic and kinematic variables. A commonality regression analysis was used to explore how independent variables contributed to multiple-regression models for the sprint phases. Propulsive forces play a key role in sprint performance during the initial acceleration (r = 0.95 ± 0.03) and transition phases (r = 0.74 ± 0.19), while braking duration plays an important role during the transition phase (r = ?0.72 ± 0.20). Contact time, vertical force and peak propulsive forces represented key determinants (r = ?0.64 ± 0.31, r = 0.57 ± 0.35 and r = 0.66 ± 0.30, respectively) of maximal velocity phase performance, with peak propulsive force providing the largest unique contribution to the regression model for step velocity. These results clarified the role of force and time variables on sprinting performance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号