首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The inability of the between-bowlers methodology to control parameters external to technique could lead to erroneous significant and non-significant associations being reported between fast-bowling technique and ball release speed. Using Pearson's product - moment correlation, we first examined the effectiveness of a within-bowler methodology to identify associations between technique and ball release speed of an elite semi-open fast bowler over 20 deliveries. These results were compared with associations identified from a between-bowlers methodology in which 20 single-performance trials bowled by elite fast bowlers adopting a semi-open shoulder alignment were collated. Sufficient variation was observed in within-bowler ball release speed to allow f relationships to be identified between technique and ball release speed. Although greater variation in bowling technique parameters was observed in the between-bowlers methodology, no associations were identified between technique and ball release speed. Multiple stepwise regression analysis showed that 87.5% of the within-bowler variation in ball release speed can be attributed to run-up velocity, angular velocity of the bowling arm, vertical velocity of the non-bowling arm, and stride length. The within-bowler methodology provided significant detailed information about the individual bowler that the between-bowlers methodology overlooked, forming the basis of a performance enhancement programme. It is recommended that within-bowler methodology be used in future investigation of technique relationships.  相似文献   

2.
ABSTRACT

Cricket fast bowling is a dynamic activity in which a bowler runs up and repeatedly delivers the ball at high speeds. Experimental studies have previously linked ball release speed and several technique parameters with conflicting results. As a result, computer simulation models are increasingly being used to understand the effects of technique on performance. This study evaluates a planar 16-segment whole-body torque-driven simulation model of the front foot contact phase of fast bowling by comparing simulation output with the actual performance of an elite fast bowler. The model was customised to the bowler by determining subject-specific inertia and torque parameters. Good agreement was found between actual and simulated performances with a 4.0% RMS difference. Varying the activation timings of the torque generators resulted in an optimised simulation with a ball release speed 3.5 m/s faster than the evaluation simulation. The optimised technique used more extended front ankle and knee joint angles, increased trunk flexion and a longer delay in the onset of arm circumduction. These simulations suggest the model provides a realistic representation of the front foot contact phase of fast bowling and is suitable to investigate the limitations of kinematic or kinetic variables on fast bowling performance.  相似文献   

3.
This study investigates how elbow hyperextension affects ball release speed in fast bowling. A two-segment planar computer simulation model comprising an upper arm and forearm + hand was customised to an elite fast bowler. A constant torque was applied at the shoulder and elbow hyperextension was represented using a damped linear torsional spring at the elbow. The magnitude of the constant shoulder torque and the torsional spring parameters were determined by concurrently matching three performances. Close agreement was found between the simulations and the performances with an average difference of 3.8%. The simulation model with these parameter values was then evaluated using one additional performance. Optimising ball speed by varying the torsional spring parameters found that elbow hyperextension increased ball release speed. Perturbing the elbow torsional spring stiffness indicated that the increase in ball release speed was governed by the magnitude of peak elbow hyperextension and the amount that the elbow recoils back towards a straight arm after reaching peak elbow hyperextension. This finding provides a clear understanding that a bowler who hyperextends at the elbow and recoils optimally will have an increase in ball speed compared to a similar bowler who cannot hyperextend. A fast bowler with 20° of elbow hyperextension and an optimal level of recoil will have increased ball speeds of around 5% over a bowler without hyperextension.  相似文献   

4.
This study sought to identify kinematic differences in finger-spin bowling actions required to generate variations in ball speed and spin between different playing groups. A 12-camera Vicon system recorded the off-spin bowling actions of six elite and 13 high-performance spin bowlers, and the “doosra” actions of four elite and two high-performance players. Forearm abduction and fixed elbow flexion in the bowling arm were higher for the elite players compared with the high-performance players. The elite bowlers when compared with the high-performance players delivered the off-break at a statistically significant higher velocity (75.1 and 67.1 km/hr respectively) and with a higher level of spin (26.7 and 22.2 rev/s respectively). Large effect sizes were seen between ball rotation, pelvic and shoulder alignment rotations in the transverse plane. Elbow extension was larger for elite bowlers over the period upper arm horizontal to ball release. Compared to the off-break, larger ranges of shoulder horizontal rotation, elbow and wrist extension were evident for the “doosra”. Furthermore, the “doosra” was bowled with a significantly longer stride length and lower ball release height. Although not significantly different, moderate to high effect size differences were recorded for pelvis rotation, elbow extension and elbow rotation ranges of motion.  相似文献   

5.
Kinematic studies have shown that fast bowlers have run-up velocities, based on centre of mass velocity calculations, which are comparable to elite javelin throwers. In this study, 34 fast bowlers (22.3 ± 3.7 years) of premier grade level and above were tested using a three-dimensional (3-D) motion analysis system (240 Hz). Bowlers were divided into four speed groups: slow-medium, medium, medium-fast, and fast. The mean centre of mass velocity at back foot contact (run-up speed) was 5.3 ± 0.6 m/s. Centre of mass velocity at back foot contact was significantly faster in the fastest two bowling groups compared to the slow-medium bowling group. In addition, stepwise multiple regression analysis showed that the centre of mass deceleration over the delivery stride phase was the strongest predictor of ball speed in the faster bowling groups. In conclusion, centre of mass kinematics are an important determinant of ball speed generation in fast bowlers. In particular, bowlers able to coordinate their bowling action with periods of centre of mass deceleration may be more likely to generate high ball speed.  相似文献   

6.
Cricket bowling is traditionally thought to be a rigid-arm motion, allowing no elbow straightening during the delivery phase. Conversely, research has shown that a perfectly rigid arm through delivery is practically unattainable, which has led to rule changes over the past years. The current rule requires a bowler not to increase the elbow angle by more than 15°, thus requiring a measurement to confirm legality in “suspect” bowlers. The aims of this study were to evaluate whether the current rule is maintained over a range of bowlers and bowling styles, and to ascertain whether other kinematics measures may better differentiate between legal and suspect bowling actions. Eighty-three bowlers of varying pace were analysed using reflective markers and a high-speed (240 Hz) eight-camera motion analysis system in a laboratory. The change in elbow segment angle (minimum angle between the arm and forearm), the change in elbow extension angle with respect to the flexion–extension axis of a joint coordinate system, and the elbow extension angular velocity at ball release were measured. We found that bowlers generally bowled within a change in elbow extension angle of 15°. However, this limit was unable to differentiate groups of bowlers from those who were suspected of throwing in the past. Improved differentiation was attained using the elbow extension angular velocity at ball release. The elbow extension angular velocity at ball release may be conceptually more valid than the elbow extension angle in determining which bowlers use the velocity-contributing mechanisms of a throw. Also, a high value of elbow extension angular velocity at ball release may be related to the visual impression of throwing. Therefore, it is recommended that researchers and cricket legislators examine the feasibility of specifying a limit to the elbow extension angular velocity at ball release to determine bowling legality.  相似文献   

7.
This study investigated ball release speed and performance kinematics between elite male and female cricket fast bowlers. Fifty-five kinematic parameters were collected for 20 male and 20 female elite fast bowlers. Group means were analysed statistically using an independent samples approach to identify differences. Significant differences were found between: ball release speed; run-up speed; the kinematics at back foot contact (BFC), front foot contact (FFC), and ball release (BR); and the timings between these key instants. These results indicate that the female bowlers generated less whole body linear momentum during the run-up than the males. The male bowlers also utilised a technique between BFC and FFC which more efficiently maintained linear momentum compared to the females. As a consequence of this difference in linear momentum at FFC, the females typically adopted a technique more akin to throwing where ball release speed was contributed to by both the whole body angular momentum and the large rotator muscles used to rotate the pelvis and torso segments about the longitudinal axis. This knowledge is likely to be useful in the coaching of female fast bowlers although future studies are required to understand the effects of anthropometric and strength constraints on fast bowling performance.  相似文献   

8.
通过对2010年广州亚运会板球测试赛中国女队7名主力投手技术的高速影像解析,从球速、投球臂角速度、投球步落地位置和步长、落地时身体姿态、球出手瞬间关节角等方面分析比较中国女投手的各项投球技术。结果发现:不同类型投手之间技术特征差异性明显,快投手比旋转投手的落地到球出手时间短;好投手比差投手落地位置和空中姿态稳定性好。通过研究还发现部分投手存在球出手时膝关节弯曲、手臂弯曲等技术缺陷,以及前脚越过击球线等技术犯规错误,提醒在比赛中应引起注意。  相似文献   

9.
Cricket bowling is traditionally thought to be a rigid-arm motion, allowing no elbow straightening during the delivery phase. Conversely, research has shown that a perfectly rigid arm through delivery is practically unattainable, which has led to rule changes over the past years. The current rule requires a bowler not to increase the elbow angle by more than 15 degrees, thus requiring a measurement to confirm legality in "suspect" bowlers. The aims of this study were to evaluate whether the current rule is maintained over a range of bowlers and bowling styles, and to ascertain whether other kinematics measures may better differentiate between legal and suspect bowling actions. Eighty-three bowlers of varying pace were analysed using reflective markers and a high-speed (240 Hz) eight-camera motion analysis system in a laboratory. The change in elbow segment angle (minimum angle between the arm and forearm), the change in elbow extension angle with respect to the flexion-extension axis of a joint coordinate system, and the elbow extension angular velocity at ball release were measured. We found that bowlers generally bowled within a change in elbow extension angle of 15.5 degrees. However, this limit was unable to differentiate groups of bowlers from those who were suspected of throwing in the past. Improved differentiation was attained using the elbow extension angular velocity at ball release. The elbow extension angular velocity at ball release may be conceptually more valid than the elbow extension angle in determining which bowlers use the velocity-contributing mechanisms of a throw. Also, a high value of elbow extension angular velocity at ball release may be related to the visual impression of throwing. Therefore, it is recommended that researchers and cricket legislators examine the feasibility of specifying a limit to the elbow extension angular velocity at ball release to determine bowling legality.  相似文献   

10.
Kinematic studies have shown that fast bowlers have run-up velocities, based on centre of mass velocity calculations, which are comparable to elite javelin throwers. In this study, 34 fast bowlers (22.3 +/- 3.7 years) of premier grade level and above were tested using a three-dimensional (3-D) motion analysis system (240 Hz). Bowlers were divided into four speed groups: slow-medium, medium, medium-fast, and fast. The mean centre of mass velocity at back foot contact (run-up speed) was 5.3 +/- 0.6 m/s. Centre of mass velocity at back foot contact was significantly faster in the fastest two bowling groups compared to the slow-medium bowling group. In addition, stepwise multiple regression analysis showed that the centre of mass deceleration over the delivery stride phase was the strongest predictor of ball speed in the faster bowling groups. In conclusion, centre of mass kinematics are an important determinant of ball speed generation in fast bowlers. In particular, bowlers able to coordinate their bowling action with periods of centre of mass deceleration may be more likely to generate high ball speed.  相似文献   

11.
Fast bowling in cricket is an activity that is well recognised as having high injury prevalence and there has been debate regarding the most effective fast bowling technique. The aim of this study was to determine whether two-year coaching interventions conducted in a group of elite young fast bowlers resulted in fast bowling technique alteration. Selected kinematics of the bowling action of 14 elite young fast bowlers were measured using an 18 camera Vicon Motion Analysis system before and after two-year coaching interventions that addressed specific elements of fast bowling technique. Mann-Whitney tests were used to determine whether any changes in kinematic variables occurred pre- and post-intervention between those who had the coaching interventions and those who didn't. The coaching interventions, when applied, resulted in a more side-on shoulder alignment at back foot contact (BFC) (p = 0.002) and decreased shoulder counter-rotation (p = 0.001) however, there was no difference in the degree of change in back and front knee flexion angles or lower trunk side-flexion. This study has clearly shown that specific aspects of fast bowling technique are changeable over a two-year period in elite level fast bowlers and this may be attributed to coaching intervention.  相似文献   

12.
Abstract

We examined mechanisms of coordination that enable skilled recreational baseball players to make fast overarm throws with their skilled arm and which are absent or rudimentary in their unskilled arm. Arm segment angular kinematics in three dimensions at 1000 Hz were recorded with the search-coil technique from the arms of eight individuals who on one occasion threw with their skilled right arm and on another with their unskilled left arm. Compared with their unskilled arm, the skilled arm had: a larger angular deceleration of the upper arm in space in the forward horizontal direction; a larger shoulder internal rotation velocity at ball release (unskilled arms had a negative velocity); a period of elbow extension deceleration before ball release; and an increase in wrist velocity with an increase in ball speed. It is suggested that some of these differences in arm kinematics occur because of differences between the skilled and unskilled arms in their ability to control interaction torques (the passive torque at one joint due to motion at adjacent joints). It is proposed that one reason unskilled individuals cannot throw fast is that, unlike their skilled counterparts, they have not developed the coordination mechanisms to effectively exploit interaction torques.  相似文献   

13.
ABSTRACT

When executed correctly, swing bowling has the potential to influence the outcome of a cricket match, yet little is known about the required bowling action and ball flight characteristics. This study aimed to describe the bowling action and initial ball flight characteristics as well as to identify variables that may be associated with increased swing in pathway and high-performance medium and fast pace bowlers. A 17-camera Vicon motion analysis system captured retro-reflective markers placed on the upper-body of participants and new cricket balls to quantify bowling action and initial ball flight kinematics. Bowlers delivered the ball with their forearm and hand angled in the direction of intended swing with an extended wrist flexing through the point of ball release. Bowlers who produced more swing had increased seam stability, possibly linked to a lower wrist and ball angular velocity. It is believed that swing increases with seam stability, however, optimal ranges may exist for seam azimuth angle, ball angular velocity and release speed. These findings may assist coaches to optimise the performance of bowlers, however, future research should use bowlers who play at higher levels to investigate swing bowling at greater speeds.  相似文献   

14.
The purpose of this study was to discover the contributions of individual upper body segmental rotations to ball release speed for cricket bowling and determine whether attempting to forcefully flex the lower trunk leads to an increase in ball release speed and bowling accuracy. Three dimensional kinematic data of eight male fast bowlers were recorded by a Vicon motion capture system under three cricket bowling conditions: (1) participants bowled at their stock delivery speeds (sub-max condition), (2) participants bowled at their absolute maximal speeds (max condition), and (3) participants bowled at their absolute maximal speeds but forced to flex the lower trunk (max-trunk condition). The accuracy of each delivery was also measured. The results showed that the average ball release speeds for the max-trunk condition were faster than the other two conditions. A general pattern of proximal to distal sequencing was observed for all three conditions. There was a slight decrement in accuracy seen in the max-trunk condition with respect to the other two conditions. For all three conditions, the upper arm rotation made the largest contribution, followed in turn by torso and thorax rotation, pelvis rotation, linear velocity of pelvis, and forearm and hand rotation.  相似文献   

15.
This study aimed to investigate whether high peak ground reaction forces and high average loading rates are necessary to bowl fast. Kinematic and kinetic bowling data were collected for 20 elite male fast bowlers. A moderate non-significant correlation was found between ball speed and peak vertical ground reaction force with faster bowlers tending to have lower peak vertical ground reaction force (r = ?0.364, P = 0.114). Faster ball speeds were correlated with both lower average vertical and lower average horizontal loading rates (r = ?0.452, P = 0.046 and r = ?0.484, P = 0.031, respectively). A larger horizontal (braking) impulse was associated with a faster ball speed (r = 0.574, P = 0.008) and a larger plant angle of the front leg (measured from the vertical) at front foot contact was associated with a larger horizontal impulse (r = 0.706, P = 0.001). These findings suggest that there does not necessarily need to be a trade-off between maximum ball release speed and the forces exerted on fast bowlers (peak ground reaction forces and average loading rates). Furthermore, it appears that one of the key determinants of ball speed is the horizontal impulse generated at the ground over the period from front foot contact until ball release.  相似文献   

16.
Abstract

This study aimed to assess changes in bowling technique and lumbar load over the course of a bowling spell in adolescent fast bowlers, and to investigate the relationship between lumbar loads during fast bowling and kinematic factors which have previously been associated with low back injury. Three-dimensional motion analysis was carried out on forty participants who performed an 8-over bowling spell. There were no significant changes in bowling technique or lumbar loads over the course of the spell. Bowling with a more extended front knee, faster ball release speed and increased shoulder counter-rotation were related to increased lumbo-pelvic loading – in particular peak transverse plane rotation moments and anterior-posterior shear forces. These lumbar loads may be a factor in low back injury aetiology and future studies should investigate the relationship between lumbar loading, injury incidence and other risk factors.  相似文献   

17.
Cricket     
The laws of bowling in cricket state ‘a ball is fairly delivered in respect of the arm if, once the bowler's arm has reached the level of the shoulder in the delivery swing, the elbow joint is not straightened partially or completely from that point until the ball has left the hand’. Recently two prominent bowlers, under suspicion for transgressing this law, suggested that they are not ‘throwing’ but due to an elbow deformity are forced to bowl with a bent bowling arm. This study examined whether such bowlers can produce an additional contribution to wrist/ball release speed by internal rotation of the upper arm. The kinematics of a bowling arm were calculated using a simple two‐link model (upper arm and forearm). Using reported internal rotation speeds of the upper arm from baseball and waterpolo, and bowling arm kinematics from cricket, the change in wrist speed was calculated as a function of effective arm length, and wrist distance from the internal rotation axis. A significant increase in wrist speed was noted. This suggests that bowlers who can maintain a fixed elbow flexion during delivery can produce distinctly greater wrist/ball speeds by using upper arm internal rotation.  相似文献   

18.
In order to get bounce and movement seam bowlers need to bowl the ball “into” the pitch. Standard deliveries by elite players are typically projected at around 7° below horizontal. In contrast, young players currently often need to release the ball almost horizontally in an effort to get the ball to bounce close enough to the batter. We anticipated that shortening the pitch could be a simple way to help young bowlers to release the ball at a better angle and with more consistency. Twenty county or best in club age group under 10 and under 11 seam bowlers were analysed bowling indoors on two different pitch lengths. They were found to project the ball on average 3.4° further below horizontal on a 16 yard pitch compared with a 19 yard pitch, while ball speed and position at release changed negligibly. Pitch length did not affect the consistency of the release parameters. The shorter pitch led to a ball release angle closer to that of elite bowlers without changing release speed, and this should enable players to achieve greater success and develop more variety in their bowling.  相似文献   

19.
We tested the hypothesis that variability in the timing of ball release in overarm throws affects ball speed. Nine unskilled and six skilled throwers made 30 throws fast and accurately from a sitting and standing position. Angular positions of finger and arm segments were recorded with search-coils at 1000 Hz; ball speed was measured with a radar gun. The time of ball release from the fingertips was measured with respect to seven arm kinematic reference points. Mean timing windows for ball release were 28?ms for unskilled throwers and 7?ms for skilled throwers. Mixed-model analyses of variance showed that a there was a statistically significant relationship between ball speed and the timing of ball release in unskilled throwers, but not in skilled throwers. This was presumably due to the difference in variability of the timing of ball release between the two groups. In contrast, skilled throwers showed a relationship between ball speed and peak forearm angular velocity (one measure of arm speed). We conclude that although variability in the timing of ball release can affect ball speed, this is only a major factor in unskilled throwers. When skilled throwers throw fast, variability in ball speed is due to variability in arm speed.  相似文献   

20.
Abstract

The ecological constraints of practice have a significant effect on the acquisition of functional information–movement couplings and learners need to converge on information-specifying perceptual variables. Consequently, the prolonged and widespread use of ball projection machines for the practice of interceptive actions may lack theoretical foundation because they afford information-specifying variables that are not present in competition. The timing and coordination of the forward defensive stroke in cricket batting were examined in experienced batters under two typical practice task constraints: batting against a representative “real” bowler and a representative bowling machine (mean delivery velocity 26.76 m·s?1 under both conditions). Significant adaptation of coordination and timing was observed under the different practice task constraints. For example, initiation of the backswing was later against a bowler and downswing was faster with a different ratio of backswing–downswing when batting against the bowling machine (47%–53%) compared with the bowler (54%–46%). Peak bat height differed under the two constraints (bowling machine: mean 1.56 m, s=19.89; bowler: 1.72 m, s=10.36 m). Mean length of front foot stride was shorter against the bowling machine (0.55 m, s=0.07 m) than the bowler (0.59 m, s=0.06 m). The correlation between initiation of backswing and front foot movement was much higher against the bowler (r?=?0.88) than the bowling machine (r=0.65).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号