首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
一、化归为二次函数问题运用适当的代数代换 ,将所给函数转化为容易求得最值的二次函数 ,从而求得原函数的最值 .例 1 求函数 y =x - 4 2 -x的最值 .解 :令t=2 -x(t≥ 0 ) ,则t2 =2 -x ,x =2 -t2 .∴ y =f(t) =( 2 -t2 ) - 4t=- (t+ 2 ) 2 + 6 .由于 y =f(t)在 [- 2 ,+∞ )上递减 ,且t≥ 0 ,所以ymax=f( 0 ) =2 .y无最小值 .注 :运用这一方法时要密切注意新变量t的取值范围 .二、化归为基本不等式问题当函数表达式满足基本不等式的条件时 ,可利用基本不等式求函数的最值 .例 2 求函数 y =3xx2 + 4 的最值 …  相似文献   

2.
薄峰 《甘肃教育》2000,(10):36-37
最值问题是中学数学的重点和难点内容之一,确定正确的解题方向是解题成功的关键 .本文介绍十一种最值问题的思维发散方向 . 一、联想二次函数 例 1. 求函数 y=x2-的最小值 . 解:令 u= (u≥ ),有 x2=. y=u2- u- =(u- 1)2- 2, 由根据二次 函数的性质可得 ymin=- . 二、联想函数的单调性 例 2.求函数 y=(a2>b2)的最小值 . 解:令 u= (u≥ |a|),则 y=u+ (u≥ |a|). 易证函数 y=u+ (u≥ |a|)为增函数 . ∴ 当 u=|a|,即 x=0时,函数有最小值为 . 三、联想正弦型或余弦型函数的有界性 例 3. 求函数 y=x+的最值 . 解:令 x=sinα,α∈…  相似文献   

3.
设W =au bv  (u、v为变数 ,a、b是常数 )且u2 -v2 =r2   (r >0 ) .如何求W =au bv的值域 (或最值 ) ?本文探讨这一问题 .由u2 -v2 =r2 ,作代换u =r2 (t 1t)v=r2 (t- 1t)  (t≠ 0 ) ,  则W =r2 (a b)t a-bt .于是求W =au bv的值域 (或最值 )转化为求函数W (t) =r2 (a b)t a-bt 的值域 (或最值 ) .t的范围由u ,v的取值范围确定 ,常见有下面几种情形 :( 1)当u≥r ,v∈R时 ,t>0 ;( 2 )当|u|≥r ,v≥ 0时 ,t≥ 1或 - 1≤t<0 ;( 3)当u≥r ,v≥ 0时 ,t≥ 1;( 4 )…  相似文献   

4.
数形结合就是把抽象的数量关系与直观的图形结合起来思索,使抽象思维和形象思维结合,通过“以形助数”或“以数解形”,使复杂问题简单化,抽象问题具体化,从而达到优化解题途径的目的.本文通过几例说明构造曲线方程,利用数形结合可有效地求出一类函数的值域. 例1 求函数2()12fxxx=+-的值域. 分析 设212yx=-,则其表示半椭圆 2221(0)xyy+=?求()fx值域的问题转化为直线xym+=与2221(0)xyy+=秤泄驳闶?求m的取值问题. 从而结合图形易知,当直 线xym+=与 222xy+ 1(0)y=诚嗲惺?m取最 大值6/2;当直线xy+ m=过点(2/2,0)- 时, m取最小值2/2-.当2/26/2m-…  相似文献   

5.
运用导数研究函数的单调性、极值、最值以及证明不等式,是一种可行性强、操作性简单的方法.一、求函数的解析式【例1】 设y = f(x)为三次函数,且图像关于原点对称,当 x =12时的极小值为-1,求函数f(x)的解析式.解析:设f(x)= ax3 bx2 cx d(a≠0),因为其图像关于原点对称.即f(- x) =- f(x)得ax3 bx2 cx d= ax3 - bx2 cx - d(x∈R),∴b =0,d =0,即f(x) = ax3 cx,由f′(x) =3ax2 c,依题意f′(12) =34a c =0,f(12) =18a c2=-1解之,得a =4,c =-3.故所求函数的解析式为 f(x) = 4x3 -3x.二、求函数的单调区间【例2】 求函数f(x…  相似文献   

6.
函数极值的求解,在初等数学中没有定法,初学者常常感到无从下手,或者不得其法,错误套用知识.本文介绍几种较容易掌握的方法,供初学者参考,开拓思路.1降元法求多元函数极值的基本方法之一就是选择两个变量作为主元,而消去其他变量,化为二元函数求解.例1已知2xy =,求函数222zyx=-的极值.解由题设得2yx=-,代入222yx-得222(2)2(2)8zxxx=--=- .∵2(2)80x- ?∴222222x--- 即函数的定义域为[222,222]--- .∴当2x=-时,max22z=,当222x=- 时,min0z=.例2已知3412xy =,且0,0xy吵,求函数2244zxyxy= --的极值.解由3412xy =得1234xy-=代入函数式并整理得2…  相似文献   

7.
一、观察法通过对函数定义域的观察,结合函数的解析式,求出函数的值域.例1求函数y=3 !2-3x的值域.解析由算术平方根的性质可知,!2-3x≥0,故3 !2-3x≥3.∴原函数的值域为{y|y≥3}.小结算术平方根具有双重非负性:(1)被开方数的非负性;(2)值的非负性.二、反函数法当原函数的反函数存在时,它的反函数的定义域就是原函数的值域.例2求函数y=xx 21的值域.解析由于函数y=xx 12的反函数为y=1x--21x,故原函数的值域为{y|y≠1}.小结利用反函数法求函数的值域的前提条件是原函数必须存在反函数.这种方法体现了逆向思维的思想,是解数学题的重要方…  相似文献   

8.
在讨论求函数的值域时 ,有些书上介绍了一种方法 ,即所谓的“反函数法” .例如 [1]介绍“反函数法”如下 :如果函数 f(x)存在反函数x =f-1(y) ,则x =f-1(y)的定义域就是函数 y=f(x)的值域 .例 1 求函数 y=1(1-x) (1- 2x) 的值域 .解 由函数 y =1(1-x) (1- 2x) ,解得x =3y± y2 +8y4 y .其定义域由 y2 +8y≥ 0 ,且 y≠ 0确定 ,所以 ,y=1(1-x) (1- 2x) 的值域是……我们认为 ,“反函数法”作为一种求函数值域的方法是不成立的 .从映射的观点看 ,一个函数包含三个要素 :数集A、B ,以及从A到B的对应法则 f :…  相似文献   

9.
设n个数据x1,x2 ,… ,xn 的平均数为x ,则其方差为s2 =1n[(x1-x) 2 +(x2 -x) 2 +… +(xn-x) 2 ]=1n[(x21+x22 +… +x2 n) -1n(x1+x2 +… +xn) 2 ]显然s2 ≥ 0 (当且仅当x1=x2 =… =xn=x时取等号 )。应用这一公式 ,可简捷、巧妙地解决一些竞赛试题中的最值问题 ,例说如下 :1 求函数的最值例 1 求函数 y=3x+1 -3x的最大值。(1 984年上海市中学生数学竞赛试题 )解 ∵ 3x、 1 -3x的方差是s2 =12 [(3x) 2 +(1 -3x) 2 -12 (3x +1 -3x) 2 ]=12 (1 -12 y2 )≥ 0 ,∴ y2 ≤ 2 ,故ymax=2。例 2 求…  相似文献   

10.
平均不等式是解决最值问题的常用方法之一 ,但是利用它求最值必须满足“一正、二定、三相等”3个基本条件 .有些最值问题 ,在运用平均不等式时等号不能成立 ,此时 ,可适当引入参数 ,利用待定系数法 ,解决平均不等式中等号不能成立的问题 .下面举例加以说明 .一、f(x) =axm + bxn(a ,b ,m ,n>0 )例 1  (2 0 0 0年上海市高考题 )已知函数f(x) =x2 + 2x+ax ,x∈ [1,+∞ ) ,若a=12 ,求函数 f(x)的最小值 .分析 当a=12 时 ,f(x) =x + 12x+ 2≥ 2 12 + 2 ,当且仅当x =12x,即x =22 时取等号 .但 22<1,不在函数定义…  相似文献   

11.
对于求函数y=x a/x b(a>0,a、b均为常数)的最值,当x>0时,可利用均值不等式求其最值,当条件不具备时,可利用函数y= x a/x b的单调性求最值.我们利用函数单调性定义或导数知识可知该函数在(-∞,-a~(1/2)]与[a~(1/2), ∞)上为增函数,在[-a~(1/2),0)与(0,a~(1/2)]上为减函数,该数学模型渗透在多种求函数的最值问题之中,在高考题中较为多见,下面  相似文献   

12.
在一些数学问题中,恰当应用“倒数法”,可使问题化难为易. 1.求值域或最值例1 求函数y=x/x~2 2x 2~(1/2)的值域. 解(1)当x=0时,y=0;  相似文献   

13.
有意识地利用习题的特点 ,对于培养学生良好的思维品质 ,逐步形成良好的数学观念 ,提高数学素养 ,具有十分重要意义 .下面就此谈谈本人看法和体会 .一、利用迷惑性 ,培养深刻性有些习题表象的迷惑性常使思维肤浅的学生误入歧途 ,因此表象的迷惑性有利于培养学生思维的深刻性 .【例 1】 已知 3sin2 α+2cos2 β =2sinα ,求sin2 α +cos2 β的取值范围 .错解 :由条件得cos2 β =sinα -32 sin2 α ,∴sin2 α+cos2 β =sin2 α+(sinα-32 sin2 α) =-12 (sinα -1 ) 2 +12 ,当sinα =-1时 ,sin2 α +cos2 β的最小值为 -32 ;当sinα =1时 ,s…  相似文献   

14.
阮玉国 《中学理科》2004,(10):38-40
所谓整体思维 ,就是对于一个数学问题 ,不是从局部入手分析探求 ,而是先整个地考察问题的性质和条件 ,注意问题整体结构的调节和转化 ,并深入地认识到新结构下元素的作用 ,从而找到解决问题的办法 .本文结合实例谈谈利用整体思想处理高中数学问题的几种方法 .1 整体设元整体设元是指用新的变元去代替已知式或已知式中的一部分 .对于求代数式的值 ,解方程或不等式等问题 ,若直接求解比较困难时 ,常整体设元 .例 1 求函数y =sinxcosx sinx cosx的最大值 .分析 :此题若采用习惯思维无法计算 ,注意到 (sinx cosx) 2 =1 2sinxcosx,可设t=s…  相似文献   

15.
某些类似于直线形式或定比分点坐标公式形式的问题上 ,也能巧妙地利用定比分点坐标公式去解决 ,从而获得一种全新的解题理念 .1.用在一些函数值域和不等式的解答问题上【例 1】 求函数y=1+cosx3-2cosx的最值 .解 :类比x=x1+λx21+λ则y=13+ ( -23cosx) ( -12 )1+ ( -23cosx),令“直线”上三点A( 13,0 )、B( -12 ,0 )、C(y ,0 ) ,则λ =-23cosx ,知 :-23≤λ≤23,当λ =-23时 ,y =13+ ( -23) ( -12 )1+ ( -23)=2 ;当λ =23时 ,y =13+ 23( -12 )1+ 23=0 ,所以ymax =2 ,ymin =0【例 2】 求函数y=2x21+x2 的值域解 :y =2x21 +x2 =0 +x2 · 2…  相似文献   

16.
“导数”这部分内容,是高中数学新教材第三册新增内容.它为研究函数性质提供了强有力的工具,特别是借助导数,对可导函数的单调性能进行透彻的分析,为求函数的极值、最值提倡的一种简捷方法.本文例谈导数在研究函数性质中的应用.1利用导数判定函数的单调性、极值、最值例1(04年天津高考题)已知3()fxax= (0)cxda 故荝上的奇函数,当1x=时,()fx取得极值2-,(I)求()fx的单调区间和极大值;(II)对任意12,(1,1)xx?,不等式1|()fx-2()|4fx<恒成立.分析(I)∵()fx是奇函数,xR,∴(0)0f=,∴0d=.因此3()fxaxcx= ,2'()3fxaxc= .由条件(1)2f=-为()fx的极值必…  相似文献   

17.
函数是中学数学的重要内容之一 ,初学函数常会犯各种各样的错误 ,其中最典型的错误就是解题时生搬硬套 ,这主要表现在 :1 求函数的定义域时一是机械套用运算法则 (如“同大取大 ,同小取小”)而造成漏解 ,原因是考虑不周 ;二是相互套用“由 f ( x)的定义域求 f [φ( x) ]的定义域”和“由 f [φ( x) ]的定义域求 f ( x)的定义域”的方法而造成误解 ,原因是对 x的含义理解不透 .例 1 求函数 y=2 x- 1log2 x 的定义域 .错解 由已知有2 x- 1≥ 0 ,log2 x>0 , x>1 ,x>0即x∈ ( 1 , ∞ ) ,剖析 显然 x=12 时 ,函数有意义 ,x=12 即为漏解 .例 2…  相似文献   

18.
涉及函数单调性的问题包括解不等式、求最值、比较大小、乃至解方程 ,这些都是近年高考的热点问题 .若利用单调性定义求解 ,一般较为复杂 ,做此类题目时学生往往半途而废 ,失分率较高 .高中教材引入导数以后 ,利用导数解决这类问题就变得比较简单 ,学生也易于接受 .函数的单调性与其导数的关系 :设函数 y =f(x)在某个区间内可导 ,则当 f′(x) >0时 f(x)为增函数 ;当 f′(x) <0时 f(x)为减函数 .例 1 求函数 f(x) =x2 + 2x,x∈ (0 ,+∞ )的单调区间 .解 f′(x) =2x-2x2 =2 (x3-1 )x2 ,令 f′(x) =0 ,得x=1 .∵x>…  相似文献   

19.
多元函数最值问题不仅蕴含了丰富的数学思想和方法,而且有利于培养学生联想、化归的解题能力,下面通过例题介绍几种求这类最值问题的方法。一、配方法例1:求函数 f(x,y)=x~2-2xy 6y~2-14x-6y 72的最小值。解:f(x,y)=x~2-2xy 6y~2-14x-6y 72=(x-y-7)~2 5(y-2)~2 3≥3因此当 x-y-7-y-2=0即x=9,y=2时,f(x,y)的最小值为3  相似文献   

20.
在解数学题时 ,人们运用逻辑推理方法 ,一步一步地寻求必要条件 ,最后求得结论 ,是一种常用的方法 .对于有些问题 ,若能根据其具体情况 ,合理地、巧妙地对某些元素赋值 ,特别是赋予确定的特殊值 (如 0 ,1,- 2等 ) ,往往能使问题获得简捷有效的解决 .这就是赋值法 .下面举例说明这种方法在解题中的应用 .1 在函数解题中的应用例 1 已知二次函数 f(x) =ax2 +bx+c(a,b∈R)满足下列条件 :f(- 1) =0 ,且对任意实数 x都有 f(x) - x≥ 0 ,并且当 x∈ (0 ,2 )时 ,有 f(x)≤ (x+12 ) 2 .(1)求 f (1)的值 ;(2 )判断 a,b,c的符号 .解  (1)∵当 x∈ …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号