首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

This study investigated the effects of acute caffeine ingestion following short-term creatine supplementation on an incremental cycling to exhaustion task. Twelve active males performed the task under three conditions: baseline condition (BASE, no ergogenic aid), creatine plus caffeine condition (CRE + CAF), and creatine with placebo condition (CRE + PLA). Following the establishment of BASE condition, participants were administered CRE + CAF (0.3 g·kg?1·day?1 of creatine for 5 days followed by 6 mg·kg?1 of caffeine 1 h prior to testing) and CRE + PLA (0.3 g·kg?1·day?1 of creatine for 5 days followed by 6 mg·kg?1 of placebo 1 h prior to testing) in a double-blind, randomized crossover and counterbalancing protocol. No significant differences were observed in relative maximal oxygen consumption ([Vdot]O2max) (51.7±5.5, 52.8±4.9 and 51.3±5.6 ml·kg?1·min?1 for BASE, CRE + CAF and CRE + PLA, respectively; P>0.05) and absolute [Vdot]O2max (3.6±0.4, 3.7±0.4 and 3.5±0.5 l·min?1 for BASE, CRE + CAF and CRE + PLA, respectively; P>0.05). Blood samples indicated significantly higher blood lactate and glucose concentrations in the CRE + CAF among those in the BASE or CRE + PLA condition during the test (P<0.05). The time to exhaustion on a cycling ergometer was significantly longer for CRE + CAF (1087.2±123.9 s) compared with BASE (1009.2±86.0 s) or CRE + PLA (1040.3±96.1 s). This study indicated that a single dose of caffeine following short-term creatine supplementation did not hinder the creatine–caffeine interaction. In fact, it lengthened the time to exhaustion during an incremental maximum exercise test. However, this regime might lead to the accumulation of lactate in the blood.  相似文献   

2.
Investigations in the 1990s evaluated the influence of breathing assemblies on respiratory variables at rest and during exercise; however, research on new models of breathing assemblies is lacking. This study compared metabolic gas analysis data from a mouthpiece with a noseclip (MOUTH) and a face mask (MASK). Volunteers (7 males, 7 females; 25.1 ± 2.7 years) completed two maximal treadmill tests within 1 week, one MOUTH and one MASK, in random order. The difference in maximal oxygen consumption (VO2max) between MOUTH (52.7 ± 11.3 ml · kg?1 · min?1) and MASK (52.2 ± 11.7 ml · kg?1 · min?1) was not significant (P = 0.53). Likewise, the mean MOUTH–MASK differences in minute ventilation (VE), fraction of expired oxygen (FEO2) and carbon dioxide (FECO2), respiration rate (RR), tidal volume (Vt), heart rate (HR), and rating of perceived exertion (RPE) at maximal and submaximal intensities were not significant (P > 0.05). Furthermore, there was no systematic bias in the error scores (r = ?0.13, P = 0.66), and 12 of the 14 participants had a VO2max difference of ≤3 ml · kg?1 · min?1 between conditions. Finally, there was no clear participant preference for using the MOUTH or MASK. Selection of MOUTH or MASK will not affect the participant’s gas exchange or breathing patterns.  相似文献   

3.
Abstract

It has been shown that the critical power (CP) in cycling estimated using a novel 3-min all-out protocol is reliable and closely matches the CP derived from conventional procedures. The purpose of this study was to assess the predictive validity of the all-out test CP estimate. We hypothesised that the all-out test CP would be significantly correlated with 16.1-km road time-trial (TT) performance and more strongly correlated with performance than the gas exchange threshold (GET), respiratory compensation point (RCP) and V?O2 max. Ten club-level male cyclists (mean±SD: age 33.8±8.2 y, body mass 73.8±4.3 kg, V?O2 max 60±4 ml·kg?1·min?1) performed a 10-mile road TT, a ramp incremental test to exhaustion, and two 3-min all-out tests, the first of which served as familiarisation. The 16.1-km TT performance (27.1±1.2 min) was significantly correlated with the CP (309±34 W; r=?0.83, P<0.01) and total work done during the all-out test (70.9±6.5 kJ; r=?0.86, P<0.01), the ramp incremental test peak power (433±30 W; r=?0.75, P<0.05) and the RCP (315±29 W; r=?0.68, P<0.05), but not with GET (151±32 W; r=?0.21) or the V?O2 max (4.41±0.25 L·min?1; r=?0.60). These data provide evidence for the predictive validity and practical performance relevance of the 3-min all-out test. The 3-min all-out test CP may represent a useful addition to the battery of tests employed by applied sport physiologists or coaches to track fitness and predict performance in atheletes.  相似文献   

4.
5.
Abstract

This study compared the physiological responses (oxygen consumption and energy expenditure) of Nordic Walking to regular walking under field-testing conditions. Eleven women (M age = 27.1 years, SD = 6.4) and 11 men (M age = 33.8 years, SD = 9.0) walked 1,600 m with and without walking poles on a level, 200-m track. For women, Nordic Walking resulted in increased oxygen consumption (M = 14.9 ml·kg1·min?1 , SD = 3.2 vs. M = 17.9 ml·kg1·min?1 , SD = 3.5; p < .001), caloric expenditure (M = 4.6 kcal·min?1 , SD = 1.2 vs. M = 5.4 kcal·min?1 , SD = 1.2; p < .001), and heart rate (M = 113.7 bpm, SD = 12.0 vs. M = 118.7 bpm, SD = 14.8; p < .05) compared to regular walking. For men, Nordic Walking resulted in increased oxygen consumption (M = 12.8 ml·kg1·min?1 , SD = 1.8 vs. M = 15.5, SD = 3.4 ml·kg1·min?1; p < .01), caloric expenditure (M = 5.7 kcal·min?1 , SD = 1.3 vs. M = 6.9 kcal·min?1 , SD = 1.8; p < .001), and heart rate (M = 101.6 bpm, SD = 12.0 bpm vs. M = 109.8 bpm, SD = 14.7; p < .01) compared to regular walking. Nordic Walking, examined in the field, results in a significant increase in oxygen use and caloric expenditure compared to regular walking, without significantly increasing perceived exertion.  相似文献   

6.
Abstract

Mountain biking is a popular recreational pursuit and the physiological demands of cross-country style riding have been well documented. However, little is known regarding the growing discipline of gravity-assisted downhill cycling. We characterised the physiological demands of downhill mountain biking under typical riding conditions. Riding oxygen consumption ([Vdot]O2) and heart rate (HR) were measured on 11 male and eight female experienced downhill cyclists and compared with data during a standardised incremental to maximum ([Vdot]O2max) exercise test. The mean [Vdot]O2 while riding was 23.1 ± 6.9 ml · kg?1 · min?1 or 52 ± 14% of [Vdot]O2max with corresponding heart rates of 146 ± 11 bpm (80 ± 6% HRmax). Over 65% of the ride was in a zone at or above an intensity level associated with improvements in health-related fitness. However, the participants’ heart rates and ratings of perceived exertion were artificially inflated in comparison with the actual metabolic demands of the downhill ride. Substantial muscular fatigue was evident in grip strength, which decreased 5.4 ± 9.4 kg (5.5 ± 11.2%, P = 0.03) post-ride. Participation in downhill mountain biking is associated with significant physiological demands, which are in a range associated with beneficial effects on health-related fitness.  相似文献   

7.
Abstract

The aims of the present study were to assess the maximal oxygen uptake and body composition of adult Chinese men and women, and to determine how these variables relate to age. The cross-sectional sample consisted of 196 men and 221 women aged 20 – 64 years. Maximal oxygen uptake ([Vdot]O2max) was determined by indirect calorimetry during a maximal exercise test on an electrically braked cycle ergometer. The correlations between [Vdot]O2max and fat mass were ?0.52 in men and ?0.58 in women. Linear regression defined the cross-sectional age-related decline in [Vdot]O2max as 0.35 ml · kg?1 · min?1 · year?1 in men and 0.30 ml · kg?1 · min?1 · year?1 in women. Multiple regression analysis showed that more than 50% of this cross-sectional decline in [Vdot]O2max was due to fat mass, lean mass, and age. Adding fat mass and lean mass to the multiple regression models reduced the age regression mass from 0.35 to 0.24 ml · kg?1 · min?1 · year?1 in men and from 0.30 to 0.15 ml · kg?1 · min?1 · year?1 in women. We conclude that age, fat mass, and lean mass are independent determinants of maximal oxygen uptake in Chinese adults.  相似文献   

8.
Abstract

The purpose of this study was to compare the physiological responses of Nordic walking on a specially designed treadmill and Nordic walking on a level over-ground surface. Thirteen participants completed three 1-h Nordic walking training sessions. Following the training sessions, each participant performed two 1600-m over-ground Nordic walking trials at a self-selected pace. Each participant then completed two 1600-m Nordic walking treadmill trials on a Hammer Nordic Walking XTR Treadmill®, at the mean walking speed of their two over-ground Nordic walking trials. Breath-by-breath analysis of oxygen uptake ([Vdot]O2) and heart rate was performed during each trial. Caloric expenditure was calculated using the [Vdot]O2. Rating of perceived exertion (RPE) was assessed at the end of each trial. We found no significant differences in physiological variables collected during the two over-ground Nordic walking trials or the two treadmill Nordic walking trials. Mean walking speed was 106.96±11.49 m · min?1. Mean heart rate during treadmill walking (99±13 beats · min?1) was 22% lower than that during the over-ground condition (126±17 beats · min?1). Mean [Vdot]O2 and mean caloric expenditure were also lower during treadmill walking (15.18±3.81 ml · min?1 · kg?1, 0.08±0.02 kcal · min?1 · kg?1) than over-ground walking (24.16±4.89 ml · min?1 · kg?1, 0.12±0.02 kcal · min?1 · kg?1). Analysis of variance demonstrated that all variables were significantly higher during over-ground Nordic walking (P<0.001). A Mann-Whitney U-test demonstrated that the RPE for over-ground Nordic walking was greater than that for treadmill Nordic walking (P=0.02). Thus over-ground Nordic walking created a greater physiological stress than treadmill Nordic walking performed at the same speed and distance. The reason for this difference may have been the relatively narrow walking and poling decks on the treadmill, which made it difficult for the participants to place their poles correctly and maintain a consistent walking pattern. This would decrease the contribution of the arm muscles to overall oxygen consumption. In conclusion, the Hammer Nordic Walking XTR Treadmill® does not replicate the physiological stress of over-ground Nordic walking. Increasing the width of the decks could eliminate the discrepancy.  相似文献   

9.
Abstract

In this study, we investigated the effect of biological maturation on maximal oxygen uptake ([Vdot]O2max) and ventilatory thresholds (VT1 and VT2) in 110 young soccer players separated into pubescent and post-pubescent groups.. Maximal oxygen uptake and [Vdot]O2 corresponding to VT1 and VT2 were expressed as absolute values, ratio standards, theoretical exponents, and experimentally observed exponents. Absolute [Vdot]O2 (ml · min?1) was different between groups for VT1, VT2, and [Vdot]O2max. Ratio standards (ml · kg?1 · min?1) were not significantly different between groups for VT1, VT2, and [Vdot]O2max. Theoretical exponents (ml · kg?0.67 · min?1 and ml · kg?0.75 · min?1) were not properly adjusted for the body mass effects on VT1, VT2, and [Vdot]O2max. When the data were correctly adjusted using experimentally observed exponents, VT1 (ml · kg?0.94 · min?1) and VT2 (ml · kg?0.95 · min?1) were not different between groups. The experimentally observed exponent for [Vdot]O2max (ml · kg?0.90 · min?1) was different between groups (P = 0.048); however, this difference could not be attributed to biological maturation. In conclusion, biological maturation had no effect on VT1, VT2 or [Vdot]O2max when the effect of body mass was adjusted by experimentally observed exponents. Thus, when evaluating the physiological performance of young soccer players, allometric scaling needs to be taken into account instead of using theoretical approaches.  相似文献   

10.
Abstract

We assessed the agreement between maximal oxygen consumption ([Vdot]O2max) measured directly when performing the 20-m shuttle run test and estimated [Vdot]O2max from five different equations (i.e. Barnett, equations a and b; Léger; Matsuzaka; and Ruiz) in youths. The 20-m shuttle run test was performed by 26 girls (mean age 14.6 years, s = 1.5; body mass 57.2 kg, s = 8.9; height 1.60 m, s = 0.06) and 22 boys (age 15.0 years, s = 1.6; body mass 63.5 kg, s = 11.5; height 1.70 m, s = 0.01). The participants wore a portable gas analyser (K4b2, Cosmed) to measure [Vdot]O2 during the test. All the equations significantly underestimated directly measured [Vdot]O2max, except Barnett's (b) equation. The mean difference ranged from 1.3 ml · kg?1 · min?1 (Barnett (b)) to 5.5 ml · kg?1 · min?1 (Léger). The standard error of the estimate ranged from 5.3 ml · kg?1 · min?1 (Ruiz) to 6.5 ml · kg?1 · min?1 (Léger), and the percentage error ranged from 21.2% (Ruiz) to 38.3% (Léger). The accuracy of the equations available to estimate [Vdot]O2max from the 20-m shuttle run test is questionable at the individual level. Furthermore, special attention should be paid when comparisons are made between studies (e.g. population-based studies) using different equations. The results of the present study suggest that Barnett's (b) equation provides the closest agreement with directly measured [Vdot]O2max (cardiorespiratory fitness) in youth.  相似文献   

11.
Dietary intake, vitamin status and oxidative stress were evaluated in 17 elite male boxers. Ten of them frequently reduced body weight rapidly before competitions (Weight Loss Group) and 7 did not practice rapid weight loss (Control Group). Food record checklists, blood samples for determination of vitamin status and plasma glutathione levels were obtained during a week of weight maintenance, a pre-competition week and a post-competition week. The average dietary intakes in both groups were 33 ± 8 kcal·kg?1, 3.7 ± 1.1 g·kg?1 carbohydrates, 1.5 ± 0.4 g·kg?1 protein, 1.2 ± 0.4 g·kg?1 fat and 2.2 ± 1.0 L water per day (excluding pre-competition week in Weight Loss Group). Energy (18 ± 7 kcal·kg?1), carbohydrate (2.2 ± 0.8 g·kg?1), protein (0.8 ± 0.4 g·kg?1), fat (0.6 ± 0.3 g·kg?1) and water (1.6 ± 0.6 L) consumption (P-values <0.001) and intakes of most vitamins (P-values < 0.05) were significantly reduced during the pre-competition week in the Weight Loss Group. In both groups, the intakes of vitamins A, E and folate were below recommended values throughout the three periods; however, blood vitamin and plasma glutathione levels did not change significantly. Our findings indicate a low-caloric and low-carbohydrate diet in elite boxers, regardless of participating in rapid weight loss or not. Apparently, the pre-competitional malnutitrition in the Weight Loss Group did not induce alterations in the vitamin and glutathione status.  相似文献   

12.
Abstract

Maximal oxygen uptake ([Vdot]O2max) is considered the optimal method to assess aerobic fitness. The measurement of [Vdot]O2max, however, requires special equipment and training. Maximal exercise testing with determination of maximal power output offers a more simple approach. This study explores the relationship between [Vdot]O2max and maximal power output in 247 children (139 boys and 108 girls) aged 7.9–11.1 years. Maximal oxygen uptake was measured by indirect calorimetry during a maximal ergometer exercise test with an initial workload of 30 W and 15 W · min?1 increments. Maximal power output was also measured. A sample (n = 124) was used to calculate reference equations, which were then validated using another sample (n = 123). The linear reference equation for both sexes combined was: [Vdot]O2max (ml · min?1) = 96 + 10.6 · maximal power + 3.5 · body mass. Using this reference equation, estimated [Vdot]O2max per unit of body mass (ml · min?1 · kg?1) calculated from maximal power correlated closely with the direct measurement of [Vdot]O2max (r = 0.91, P <0.001). Bland-Altman analysis gave a mean limits of agreement of 0.2±2.9 (ml · min?1 · kg?1) (1 s). Our results suggest that maximal power output serves as a good surrogate measurement for [Vdot]O2max in population studies of children aged 8–11 years.  相似文献   

13.
This study compares test-retest reliability and peak exercise responses from ramp-incremented (RAMP) and maximal perceptually-regulated (PRETmax) exercise tests during arm crank exercise in individuals reliant on manual wheelchair propulsion (MWP). Ten untrained participants completed four trials over 2-weeks (two RAMP (0–40 W + 5–10 W · min?1) trials and two PRETmax. PRETmax consisted of five, 2-min stages performed at Ratings of Perceived Exertion (RPE) 11, 13, 15, 17 and 20). Participants freely changed the power output to match the required RPE. Gas exchange variables, heart rate, power output, RPE and affect were determined throughout trials. The V?O2peak from RAMP (14.8 ± 5.5 ml · kg?1 · min?1) and PRETmax (13.9 ± 5.2 ml · kg?1 · min?1) trials were not different (P = 0.08). Measurement error was 1.7 and 2.2 ml · kg?1 · min?1 and coefficient of variation 5.9% and 8.1% for measuring V?O2peak from RAMP and PRETmax, respectively. Affect was more positive at RPE 13 (P = 0.02), 15 (P = 0.01) and 17 (P = 0.01) during PRETmax. Findings suggest that PRETmax can be used to measure V?O2peak in participants reliant on MWP and leads to a more positive affective response compared to RAMP.  相似文献   

14.
This study adopted a multidimensional approach to performance prediction within Olympic distance cross-country mountain biking (XCO-MTB). Twelve competitive XCO-MTB cyclists (VO2max 60.8 ± 6.7 ml · kg?1 · min?1) completed an incremental cycling test, maximal hand grip strength test, cycling power profile (maximal efforts lasting 6–600 s), decision-making test and an individual XCO-MTB time-trial (34.25 km). A hierarchical approach using multiple linear regression analyses was used to develop predictive models of performance across 10 circuit subsections and the total time-trial. The strongest model to predict overall time-trial performance achieved prediction accuracy of 127.1 s across 6246.8 ± 452.0 s (adjusted R2 = 0.92; P < 0.01). This model included VO2max relative to total cycling mass, maximal mean power across 5 and 30 s, peak left hand grip strength, and response time for correct decisions in the decision-making task. A range of factors contributed to the models for each individual subsection of the circuit with varying predictive strength (adjusted R2: 0.62–0.97; P < 0.05). The high prediction accuracy for the total time-trial supports that a multidimensional approach should be taken to develop XCO-MTB performance. Additionally, individual models for circuit subsections may help guide training practices relative to the specific trail characteristics of various XCO-MTB circuits.  相似文献   

15.
16.
The purpose of this study was to develop a multiple linear regression model to predict treadmill VO2max scores using both exercise and non-exercise data. One hundred five college-aged participants (53 male, 52 female) successfully completed a submaximal cycle ergometer test and a maximal graded exercise test on a motorized treadmill. The submaximal cycle protocol required participants to achieve a steady-state heart rate equal to at least 70% of age-predicted maximum heart rate (220-age), while the maximal treadmill graded exercise test required participants to exercise to volitional fatigue. Relevant submaximal cycle ergometer test data included a mean (±SD) ending steady-state heart rate and ending workrate equal to 164.2 ± 13.0 bpm and 115.3 ± 27.0 watts, respectively. Relevant non-exercise data included a mean (±SD) body mass (kg), perceived functional ability score, and physical activity rating score of 74.2 ± 15.1, 15.7 ± 4.3, and 4.7 ± 2.1, respectively. Multiple linear regression was used to generate the following prediction of (R = .91, standard error of estimates (SEE) = 3.36 ml·kg?1·min?1): VO2max = 54.513 + 9.752 (gender, 1 = male, 0 = female) – .297 (body mass, kg) + .739 (perceived functional ability, 2–26) + .077 (work rate, watts) – .072 (steady-state heart rate). Each predictor variable was statistically significant (p < .05) with beta weights for gender, body mass, perceived functional ability, exercise workrate, and steady-state heart rate equal to .594, –.544, .388, .305, and –.116, respectively. The predicted residual sums of squares (PRESS) statistics reflected minimal shrinkage (RPRESS = .90, SEEPRESS = 3.56 ml·kg?1·min?1) for the multiple linear regression model. In summary, the submaximal cycle ergometer protocol and accompanying prediction model yield relatively accurate VO2max estimates in healthy college-aged participants using both exercise and non-exercise data.  相似文献   

17.
Abstract

The single-stage treadmill walking test of Ebbeling et al. is commonly used to predict maximal oxygen consumption ([Vdot]O2max) from a submaximal effort between 50% and 70% of the participant's age-predicted maximum heart rate. The purpose of this study was to determine if this submaximal test correctly predicts [Vdot]O2max at the low (50% of maximum heart rate) and high (70% of maximum heart rate) ends of the specified heart rate range for males and females aged 18 – 55 years. Each of the 34 participants completed one low-intensity and one high-intensity trial. The two trials resulted in significantly different estimates of [Vdot]O2max (low-intensity trial: mean 40.5 ml · kg?1 · min?1, s = 9.3; high-intensity trial: 47.5 ml · kg?1 · min?1, s = 8.8; P < 0.01). A subset of 22 participants concluded their second trial with a [Vdot]O2max test (mean 47.9 ml · kg?1 · min?1, s = 8.9). The low-intensity trial underestimated (mean difference = ?3.5 ml · kg?1 · min?1; 95% CI = ?6.4 to ?0.6 ml · kg?1 · min?1; P = 0.02) and the high-intensity trial overestimated (mean difference = 3.5 ml · kg?1 · min?1; 95% CI = 1.1 to 6.0 ml · kg?1 · min?1; P = 0.01) the measured [Vdot]O2max. The predictive validity of Ebbeling and colleagues' single-stage submaximal treadmill walking test is diminished when performed at the extremes of the specified heart rate range.  相似文献   

18.
Exercise testing on motorised treadmills provides valuable information about running performance and metabolism; however, the impact of treadmill type on these tests has not been investigated. This study compared the energy demand of running on two laboratory treadmills: an HP Cosmos (C) and a Quinton (Q) model, with the latter having a 4.5 times stiffer running platform. Twelve experienced runners ran identical bouts on these treadmills at a range of four submaximal velocities (reported data is for the velocity that approximated 75–81% VO2max). The stiffer treadmill elicited higher oxygen consumption (C: 46.7 ± 3.8; Q: 50.1 ± 4.3 ml·kg?1 · min?1), energy expenditure (C: 16.0 ± 2.5; Q: 17.7 ± 2.9 kcal · min?1), carbohydrate oxidation (C: 9.6 ± 3.1; Q: 13.0 ± 3.9 kcal · min?1), heart rate (C: 155 ± 16; Q: 163 ± 16 beats · min?1) and rating of perceived exertion (C: 13.8 ± 1.2; Q: 14.7 ± 1.2), but lower fat oxidation (C: 6.4 ± 2.3; Q: 4.6 ± 2.5 kcal · min?1) (all analysis of variance treadmill comparisons < 0.01). This study confirms that caution is required when comparing performance and metabolic results between different treadmills and suggests that treadmills will vary in their comparability to over-ground running depending on the running platform stiffness.  相似文献   

19.
Abstract

This study was designed to investigate the effect of ingesting a glucose plus fructose solution on the metabolic responses to soccer-specific exercise in the heat and the impact on subsequent exercise capacity. Eleven male soccer players performed a 90 min soccer-specific protocol on three occasions. Either 3 ml · kg?1 body mass of a solution containing glucose (1 g · min?1 glucose) (GLU), or glucose (0.66 g · min?1) plus fructose (0.33 g · min?1) (MIX) or placebo (PLA) was consumed every 15 minutes. Respiratory measures were undertaken at 15-min intervals, blood samples were drawn at rest, half-time and on completion of the protocol, and muscle glycogen concentration was assessed pre- and post-exercise. Following the soccer-specific protocol the Cunningham and Faulkner test was performed. No significant differences in post-exercise muscle glycogen concentration (PLA, 62.99 ± 8.39 mmol · kg wet weight?1; GLU 68.62 ± 2.70; mmol · kg wet weight?1 and MIX 76.63 ± 6.92 mmol · kg wet weight?1) or exercise capacity (PLA, 73.62 ± 8.61 s; GLU, 77.11 ± 7.17 s; MIX, 83.04 ± 9.65 s) were observed between treatments (P > 0.05). However, total carbohydrate oxidation was significantly increased during MIX compared with PLA (P < 0.05). These results suggest that when ingested in moderate amounts, the type of carbohydrate does not influence metabolism during soccer-specific intermittent exercise or affect performance capacity after exercise in the heat.  相似文献   

20.
Abstract

Spinning is a type of indoor fitness activity performed on stationary bikes by participants who pedal together to the rhythm of music and the motivating words of an instructor. Despite worldwide popularity of this type of recreational activity, to date there have been few, mainly non-scientific, studies of the impact of spinning on metabolic, respiratory, and cardiovascular functions. The main aim of this study was to evaluate a number of metabolic and cardiovascular variables during a standard 50-min class performed by Spinning® instructors of both sexes: six males (age 30 ± 4.8 years, body mass index 24 ± 2.5 kg · m?2; mean ± s) and six females (age 34 ± 6.3 years, body mass index 21 ± 1.9 kg · m?2). The mean power output, heart rate, and oxygen uptake during the performance were 120 ± 4 W, 136 ± 13 beats · min?1, and 32.8 ± 5.4 ml · kg?1 · min?1 respectively for males, and 73 ± 43 W, 143 ± 25 beats · min?1, and 30 ± 9.9 ml · kg?1 · min?1 respectively for females. Analysis of individual performances showed that they were compatible with physical exercise that ranged from moderate-to-heavy to very heavy, the latter conditions prevailing. The results show that this type of fitness activity has a high impact on cardiovascular function and suggest that it is not suitable for unfit or sedentary individuals, especially the middle aged or elderly, who are willing to begin a recreational physical activity programme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号