首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To investigate the effects of a single high-load (80% of one repetition maximum [1RM]) set with additional drop sets descending to a low-load (30% 1RM) without recovery intervals on muscle strength, endurance, and size in untrained young men. Nine untrained young men performed dumbbell curls to concentric failure 2–3 days per week for 8 weeks. Each arm was randomly assigned to one of the following three conditions: 3 sets of high-load (HL, 80% 1RM) resistance exercise, 3 sets of low-load [LL, 30% 1RM] resistance exercise, and a single high-load (SDS) set with additional drop sets descending to a low-load. The mean training time per session, including recovery intervals, was lowest in the SDS condition. Elbow flexor muscle cross-sectional area (CSA) increased similarly in all three conditions. Maximum isometric and 1RM strength of the elbow flexors increased from pre to post only in the HL and SDS conditions. Muscular endurance measured by maximum repetitions at 30% 1RM increased only in the LL and SDS conditions. A SDS resistance training program can simultaneously increase muscle CSA, strength, and endurance in untrained young men, even with lower training time compared to typical resistance exercise protocols using only high- or low-loads.  相似文献   

2.
Abstract

The purpose of this study was to examine the acute effects of using whole-body vibrations exposure during a biceps curl set to failure (70% one-repetition maximum load) on number of repetitions performed, perceived exertion, as well as velocity- and acceleration-related parameters. Twenty-three recreationally active students (19 males and 4 females) completed one set of the biceps curl exercise with and without vibration applied. Results indicate that the vibration platform provides additional stimulus for biceps curl performance, enhancing the number of maximal repetitions achieved throughout a set to volitional exhaustion at 70% one-repetition maximum. These findings suggest that vibration can have a significant influence on exercise performance, even when the stimulus is not applied directly to the muscle group being stressed.  相似文献   

3.
Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P < 0.01) but not during concentric exercise. Similarly, the median frequency increased during eccentric (P < 0.01) but not during concentric exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P < 0.001), and lower for submaximal concentric than maximum isometric contractions (P < 0.01). The EMG per unit torque was lower for eccentric than concentric contractions (P < 0.05). The median frequency was higher for submaximal eccentric than maximum isometric contractions (P < 0.001); it was similar, however, between submaximal concentric and maximum isometric contractions (P = 0.07). Eccentric exercise resulted in significant isometric strength loss (P < 0.01), pain (P < 0.01) and muscle tenderness (P < 0.05). The greatest strength loss was seen 1 day after eccentric exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.  相似文献   

4.
ABSTRACT

The velocity and magnitude in which the eccentric phase of an exercise is completed directly affects performance during the concentric phase. Therefore, the purpose of this research was to investigate the effects of eccentric phase duration on concentric outcomes at 60% and 80% of one-repetition maximum (1RM) in the squat and bench press. Sixteen college-aged, resistance-trained males completed 1RM testing, established normative eccentric durations, and performed fast (0.75 times normative) and slow (2.0 times normative) metronome-controlled eccentric duration repetitions. Outcome measures assessed during the concentric phase were: average concentric velocity (ACV), peak concentric velocity (PCV), rating of perceived exertion (RPE), range of motion (ROM), and barbell path. Eccentric duration was significantly and inversely correlated with ACV at 60% (r = ?0.408, p = 0.004) and 80% (r = ?0.477, p = 0.001) of 1RM squat. At 60% of 1RM squat, both fast and slow eccentric conditions produced greater (p < 0.001) PCV than normative duration with fast also producing greater PCV than slow (p = 0.044). Eccentric duration had no impact on RPE, ROM, or barbell path. Our results report for the first time that resistance-trained males performing a deliberately faster eccentric phase may enhance their own squat and bench press performance.  相似文献   

5.
Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad s -1 ) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P < 0.01) but not during concentric exercise. Similarly, the median frequency increased during eccentric (P < 0.01) but not during concentric exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P < 0.001), and lower for submaximal concentric than maximum isometric contractions (P < 0.01). The EMG per unit torque was lower for eccentric than concentric contractions (P < 0.05). The median frequency was higher for submaximal eccentric than maximum isometric contractions (P < 0.001); it was similar, however, between submaximal concentric and maximum isometric contractions (P = 0.07). Eccentric exercise resulted in significant isometric strength loss (P < 0.01), pain (P < 0.01) and muscle tenderness (P < 0.05). The greatest strength loss was seen 1 day after eccentric exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.  相似文献   

6.
Abstract

The purpose of this study was to determine the recovery rate of football skill performance following resistance exercise of moderate or high intensity. Ten elite football players participated in three different trials: control, low-intensity resistance exercise (4 sets, 8–10 repetitions/set, 65–70% 1 repetition maximum [1RM]) and high-intensity resistance exercise (4 sets, 4–6 repetitions/set, 85–90% 1RM) in a counterbalanced manner. In each experimental condition, participants were evaluated pre, post, and at 24, 48, 72 h post exercise time points. Football skill performance was assessed through the Loughborough Soccer Passing Test, long passing, dribbling, shooting and heading. Delayed onset muscle soreness, knee joint range of motion, and muscle strength (1RM) in squat were considered as muscle damage markers. Blood samples analysed for creatine kinase activity, C-reactive protein, and leukocyte count. Passing and shooting performance declined (P < 0.05) post-exercise following resistance exercise. Strength declined post-exercise following high-intensity resistance exercise. Both trials induced only a mild muscle damage and inflammatory response in an intensity-dependent manner. These results indicate that football skill performance is minimally affected by acute resistance exercise independent of intensity suggesting that elite players may be able to participate in a football practice or match after only 24 h following a strength training session.  相似文献   

7.
This investigation examined effects of two exercise modes (barbell, BB; bodyweight suspension, BWS) on muscle activation, resistance load, and fatigue. During session one, nine resistance-trained males completed an elbow flexion one-repetition maximum (1RM). During sessions two and three, subjects completed standing biceps curls to fatigue at 70% 1RM utilizing a randomized exercise mode. Surface electromyography (sEMG) recorded muscle activation of the biceps brachii, triceps brachii, anterior deltoid, posterior deltoid, rectus abdominis, and erector spinae. BWS resistance load was measured using a force transducer. Standing maximal voluntary isometric contractions of the elbow flexors recorded at 90° were used to determine the isometric force decrement and rate of fatigue (ROF) during exercise. sEMG and resistance load data were divided into 25% contraction duration bins throughout the concentric phase. BWS resulted in a 67.7?±?7.4% decline in resistance load throughout the concentric phase (p?≤?0.05). As a result, BB elicited higher mean resistance loads (31.4?±?4.0?kg) and biceps brachii sEMG (84.7?±?27.8% maximal voluntary isometric contractions, MVIC) compared with BWS (20.4?±?3.4?kg, 63.4?±?21.6% MVIC). No difference in rectus abdominis or erector spinae sEMG was detected between exercise modes. Isometric force decrement was greater during BWS (?21.7?±?7.0?kg) compared with BB (?14.9?±?4.7?kg); however, BB (?3.0?±?0.8?kg/set) resulted in a steeper decline in ROF compared with BWS (?1.7?±?0.6?kg/set). The variable resistance loading and greater isometric force decrement observed suggest that select BWS exercises may resemble variable resistance exercise more than previously considered.  相似文献   

8.
离心收缩训练对肌肉力量和肌电图RMS值的影响   总被引:10,自引:1,他引:9  
为了研究离心训练对肌肉机能的影响,对18名运动员进行不同负荷的离心收缩训练,研究股四头肌和股二头肌肌肉力量和肌电图RMS值的变化,发现离心收缩训练对改善运动员的肌肉力量有明显效果,采用150%离心收缩训练和120%离心收缩训练对运动员肌电图RMS值也有一定的改善作用。  相似文献   

9.
In its last position stand about strength training, the American College of Sports Medicine recommends a rest interval (RI) between sets ranging between 1 and 3?min, varying in accordance with the objective. However, there is no consensus regarding the optimal recovery between sets, and most studies have investigated fixed intervals. Therefore, the aim of this study was to analyse the effects of fixed versus self-suggested RI between sets in lower and upper body exercises performance. Twenty-seven healthy subjects (26?±?1.5; 75?±?15?kg; 175?±?12?cm) were randomly assigned into two groups: G1: lower body exercises and G2: upper body exercises. Squat and leg press 1 repetition maximum (1RM) were tested for the G1 and bench press and biceps curl 1RM for G2. After the 1RM tests, both groups performed three sets to concentric failure with 75% of 1RM in combination with different RIs (2?min or self-suggested) on separate days and the exercises performance was evaluated by the number of repetitions. The results demonstrated no significant differences in the number of repetitions between 2?min and self-suggested RIs that presented similar reductions with the sets progression. It was also shown that the self-suggested RI spent less time recovering than the 2?min RI group on average. This suggests that for individuals with previous experience, the self-suggested RI can be an effective option when using workloads commonly prescribed aiming hypertrophy. Also, the self-suggested RI can reduce the total training session duration, which can be a more time-effective strategy.  相似文献   

10.
The purpose of this study was to compare kinematics and muscle activity between chin-ups and lat-pull down exercises and between muscle groups during the two exercises. Normalized electromyography (EMG) of biceps brachii (BB), triceps brachii (TB), pectoralis major (PM), latissimus dorsi (LD), rectus abdominus (RA), and erector spinae (ES) and kinematics of back, shoulder, and seventh cervical vertebrae (C7) was analysed during chin-ups and lat-pull down exercises. Normalized EMG of BB and ES and kinematics of shoulder and C7 for chin-ups were greater than lat-pull down exercises during the concentric phase (p < 0.05). For the eccentric phase, RA during lat-pull down exercises was greater than chin-ups and the kinematics of C7 during chin-ups was greater than lat-pull down exercises (p < 0.05). For chin-ups, BB, LD, and ES were greater than PM during the concentric phase, whereas BB and LD were greater than TB, and LD was greater than RA during the eccentric phase (p < 0.05). For lat-pull down exercise, BB and LD were greater than PM, TB, and ES during the concentric phase, whereas LD was greater than PM, TB, and BB during the eccentric phase (p < 0.05). Subsequently, chin-ups appears to be a more functional exercise.  相似文献   

11.
Electromyographic analysis of repeated bouts of eccentric exercise   总被引:1,自引:0,他引:1  
The repeated bout effect refers to the protective effect provided by a single bout of eccentric exercise against muscle damage from a similar subsequent bout. The aim of this study was to determine if the repeated bout was associated with an increase in motor unit activation relative to force production, an increased recruitment of slow-twitch motor units or increased motor unit synchronization. Surface electromyographic (EMG) signals were recorded from the hamstring muscles during two bouts of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions separated by 2 weeks. The EMG per unit torque and median frequency were analysed. The initial bout of eccentric exercise resulted in strength loss, pain and muscle tenderness, while the repeated eccentric bout resulted in a slight increase in strength, no pain and no muscle tenderness (bout x time effects, P < 0.05). Strength, pain and tenderness were unaffected by either bout of concentric exercise. The EMG per unit torque and median frequency were not different between the initial and repeated bouts of eccentric exercise. The EMG per unit torque and median frequency increased during both bouts of eccentric exercise (P < 0.01) but did not change during either concentric bout. In conclusion, there was no evidence that the repeated bout effect was due to a neural adaptation.  相似文献   

12.
The present study assessed neuromuscular and corticospinal changes during and after a fatiguing submaximal exercise of the knee extensors in different modes of muscle contraction. Twelve subjects performed two knee extensors exercises in a concentric or eccentric mode, at the same torque and with a similar total impulse. Exercises consisted of 10 sets of 10 repetitions at an intensity of 80% of the maximal voluntary isometric contraction torque (MVIC). MVIC, maximal voluntary activation level (VAL) and responses of electrically evoked contractions of the knee extensors were assessed before and after exercise. Motor evoked potential amplitude (MEP) and cortical silent period (CSP) of the vastus medialis (VM) and rectus femoris (RF) muscles were assessed before, during and after exercise. Similar reductions of the MVIC (?13%), VAL (?12%) and a decrease in the peak twitch (?12%) were observed after both exercises. For both VM and RF muscles, MEP amplitude remained unchanged during either concentric or eccentric exercises. No change of the MEP amplitude input–output curves was observed post-exercise. For the RF muscle, CSP increased during the concentric exercise and remained lengthened after this exercise. For the VM muscle, CSP was reduced after the eccentric exercise only. For a similar amount of total impulse, concentric and eccentric knee extensor contractions led to similar exercise-induced neuromuscular response changes. For the two muscles investigated, no modulation of corticospinal excitability was observed during or after either concentric or eccentric exercises. However, intracortical inhibition showed significant modulations during and after exercise.  相似文献   

13.
Maximal strength training with a focus on maximal mobilization of force in the concentric phase improves endurance performance that employs a large muscle mass. However, this has not been studied during work with a small muscle mass, which does not challenge convective oxygen supply. We therefore randomized 23 adult females with no arm-training history to either one-arm maximal strength training or a control group. The training group performed five sets of five repetitions of dynamic arm curls against a near-maximal load, 3 days a week for 8 weeks. This training increased maximal strength by 75% and improved rate of force development during both strength and endurance exercise, suggesting that each arm curl became more efficient. This coincided with a 17-18% reduction in oxygen cost at standardized submaximal workloads (work economy), and a 21% higher peak oxygen uptake and 30% higher peak load during maximal arm endurance exercise. Blood flow assessed by Doppler ultrasound in the axillary artery supplying the working biceps brachii and brachialis muscles could not explain the training-induced adaptations. These data suggest that maximal strength training improved work economy and endurance performance in the skeletal muscle, and that these effects are independent of convective oxygen supply.  相似文献   

14.
The purpose of this study was to investigate the effects of using an internal versus external focus of attention during resistance training on muscular adaptations. Thirty untrained college-aged men were randomly assigned to an internal focus group (INTERNAL) that focused on contracting the target muscle during training (n?=?15) or an external focus group (EXTERNAL) that focused on the outcome of the lift (n?=?15). Training for both routines consisted of 3 weekly sessions performed on non-consecutive days for 8 weeks. Subjects performed 4 sets of 8–12 repetitions per exercise. Changes in strength were assessed by six repetition maximum in the biceps curl and isometric maximal voluntary contraction in knee extension and elbow flexion. Changes in muscle thickness for the elbow flexors and quadriceps were assessed by ultrasound. Results show significantly greater increases in elbow flexor thickness in INTERNAL versus EXTERNAL (12.4% vs. 6.9%, respectively); similar changes were noted in quadriceps thickness. Isometric elbow flexion strength was greater for INTERNAL while isometric knee extension strength was greater for EXTERNAL, although neither reached statistical significance. The findings lend support to the use of a mind–muscle connection to enhance muscle hypertrophy.  相似文献   

15.
Abstract

Although caffeine is a widely used ergogenic resource, some information regarding its effects on resistance exercises is still lacking. The objective of the present study was to verify the acute effect of the ingestion of two different doses of caffeine on performance during a session of resistance exercises and to analyze the perception of the subjects in relation to the intake of caffeine. Following a double-blind, randomised, cross-over, controlled, and non-placebo design, 14 trained and healthy men (24.7?±?6.8 years; 79.8?±?9.8?kg; 177.3?±?8.5?cm) performed a training session in chest-press, shoulder-press, and biceps curl exercises (3 sets until exhaustion; 70% 1RM; 3 min rest interval; 2?s for each concentric and eccentric phase) on three non-consecutive days after ingestion of 3?mg.kg?1 caffeine (CAF3), 6?mg.kg?1 caffeine (CAF6), or no substance (CON). Subjects were informed that one of the caffeine doses would be placebo. The total number of repetitions performed in CON (93.6?±?22.4) was significantly lower than in CAF3 (108.0?±?19.9, P?=?0.02) and in CAF6 (109.3?±?19.8, P?=?0.03) and there were no differences between caffeine doses. Eight subjects noticed that caffeine was in CAF3 and six in CAF6 and there were no differences in the number of repetitions between sessions in which the subjects perceived and did not perceive caffeine. In conclusion, caffeine doses of 3 or 6?mg.kg?1 similarly increased performance in resistance upper limb exercises, independent of the subject's perception of substance ingestion.  相似文献   

16.
Abstract

In this study, we wished to determine whether a warm-up exercise consisting of 100 submaximal concentric contractions would attenuate delayed-onset muscle soreness and decreases in muscle strength associated with eccentric exercise-induced muscle damage. Ten male students performed two bouts of an elbow flexor exercise consisting of 12 maximal eccentric contractions with a warm-up exercise for one arm (warm-up) and without warm-up for the other arm (control) in a randomized, counterbalanced order separated by 4 weeks. Muscle temperature of the biceps brachii prior to the exercise was compared between the arms, and muscle activity of the biceps brachii during the exercise was assessed by surface integral electromyogram (iEMG). Changes in visual analogue scale for muscle soreness and maximal voluntary isometric contraction strength (MVC) of the elbow flexors were assessed before, immediately after, and every 24 h for 5 days following exercise, and compared between the warm-up and control conditions by a two-way repeated-measures analysis of variance. The pre-exercise biceps brachii muscle temperature was significantly (P<0.01) higher for the warm-up (35.8±0.2°C) than the control condition (34.4±0.2°C), but no significant differences in iEMG and torque produced during exercise were evident between conditions. Changes in muscle soreness and MVC were not significantly different between conditions, although these variables showed significant (P<0.05) changes over time. It was concluded that the warm-up exercise was not effective in mitigating delayed-onset muscle soreness and loss of muscle strength following maximal eccentric exercise.  相似文献   

17.
Abstract

Aim of the study was to compare the effects of unilateral eccentric-only training using constant velocity vs. constant external load. Forty-seven participants were randomized in isokinetic (IK), dynamic constant external resistance (DCER) unilateral eccentric training or control groups. Knee extension 1RM and isometric, eccentric and concentric knee extensors peak torque, as well as changes in vastus lateralis fascicle pennation angle, fascicle length, muscle thickness, and quadriceps fat-free mass were measured. Both IK and DCER training consisted in 5?×?8 eccentric-only repetitions, 2d/w, for 6 weeks. IK and DCER training sessions were matched for total volume. After training, both IK and DCER similarly increased 1RM (respectively, +4.4?kg, CI95% 1.8–7.0 and +5.5?kg, CI95% 3.3–7.9), isometric (respectively, +34.5?N/m, CI95% 23.0–45.9 and +15.8, CI95% 5.4–26.2) and concentric peak torque (respectively, +17.0?N/m, CI95% 6.6 to +27.4 and 12.2 CI95% 2.8–21.7). IK increased eccentric peak torque significantly more than DCER (respectively, +84.2?N/m, CI95% 66.3–102.1 and +38.2?N/m, CI95% 21.9–54.4). Both IK and DCER similarly increased fascicle length (respectively, +14.7?mm, CI95% 5.4–24.0 and +14.4?mm, CI95% 5.4–23.3) and muscle thickness (respectively, +3.3?mm, CI95% 1.5–5.1, and +4.1?mm, CI95% 2.5–5.7). Matching the training volume resulted in similar adaptations comparing eccentric-only IK or DCER resistance training. Both in rehabilitation and in training practice, the use of easily available gym devices can be a good substitute for expensive and often unavailable IK devices.  相似文献   

18.
The aim of this study was to compare the effect of 6 weeks of resistance training to volitional failure at low (30% 1 repetition maximum (RM)) or high (80%1RM) loads on gains in muscle size and strength in young women. Thirteen women (age: 29.7 ± 4.7years; height 166.7 ± 6.4cm; weight 64.2 ± 12.2kg) completed 2 training sessions per week for 6 weeks and muscle strength (1RM), muscle thickness (ultrasound) were measured before and after training. Training comprised 1 set to volitional failure of unilateral leg extensions and bicep curls with each limb randomly assigned to train at either 80% 1RM or 30% 1RM. Increases in muscle thickness [arms: 6.81 ± 3.15% (30% 1RM), 5.90 ± 3.13% (80% 1RM) and legs: 9.37 ± 5.61% (30% 1RM), 9.13 ± 7.9% (80% 1RM)] and strength [arms: 15.4 ± 12.2% (30% 1RM), 18.26 ± 12.2% (80% 1RM) and legs: 25.30 ± 18.4 (30% 1RM), 27.20 ± 14.5 (80% 1RM)] were not different between loads. When resistance exercise is performed to volitional failure gains in muscle size and strength are independent of load in young women.  相似文献   

19.
Ratings of perceived exertion (RPE: 0–10) during resistance training with varying programming demands were examined. Blood lactate (BLa) and muscle activation (using surface electromyography: EMG) were measured as potential mediators of RPE responses. Participants performed three sets of single arm (preferred side) bicep curls at 70% of 1 repetition maximum over 4 trials: Trial (A) 3 sets?×?8 repetitions?×?120?s recovery between sets; (B) 3 sets?×?8 repetitions?×?240?s recovery; (C) 3 sets?×?maximum number of repetitions (MNR)?×?120?s recovery; (D) 3 sets?×?MNR?×?240?s recovery. Overall body (RPE-O) and active muscle (RPE-AM) perceptual responses were assessed following each set in each trial. Biceps brachii and brachioradialis muscle EMG was measured during each set for each trial. RPE-O and RPE-AM were not different between Trial A (3.5?±?1 and 6?±?1, respectively) and Trial B (3.5?±?1 and 5.5?±?1, respectively) (p?p?相似文献   

20.
Background: We aimed to evaluate the influence of the level of effort during four basic resistance exercises leading to muscular failure on intraocular pressure (IOP) and ocular perfusion (OPP), as well as the role of exercise type and sex. Methods: Twenty-five young adults (12 women) performed 10 repetitions against their 10-RM (repetition maximum) load in the squat, military press, biceps curl and calf raise exercises. IOP was measured before, during and after exercise, whereas OPP was indirectly assessed before and after each exercise. Results: There was a progressive IOP rise during exercise (p?η²?=?0.531), which was dependent on exercise type (p?=?0.020, η²?=?0.125). The squat exercise induced higher IOP increments in comparison to the other exercises (corrected p-values?p-values?=?0.012 and 0.002). OPP exhibited a significant reduction when leading to muscular failure (p?=?0.001, η²?=?0.364), being statistically significant for the squat and military press exercises (corrected p-values?=?0.037 and 0.047). No effect of sex was found for IOP and OPP (p?>?0.05). Conclusions: A single set of resistance training leading to muscular failure causes an instantaneous and progressive IOP rise in healthy young individuals. These IOP rises depend on exercise type (squat?>?military press?=?biceps curl?>?calf raise), but not on participant´s sex. OPP diminished as a consequence of performing resistance training exercise, being statistically significant for the squat and military press exercises. Future studies should include glaucoma patients aiming to corroborate the generalizability of our findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号