首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
Critical power is a theoretical concept that presumes there is a certain work‐rate which may be maintained without exhaustion. The extent to which critical power predicts running performance over varying distances has not been determined, and so the aim of this study was to correlate measurements of critical power in the laboratory to running performances in the field at 40 m and 1, 10 and 21.1 km in a group of 17 male longdistance runners (mean ± s.d. age = 31.7 ± 7.3 years). Each subject ran to exhaustion on the treadmill in the laboratory at six different speeds, ranging from 17 to 25 km h‐1. Least squares analyses were used to fit an exponential decay to the relationship between the running speed (y) versus time to exhaustion (x). Critical power was calculated as the running speed (y) coinciding with the asymptote or C parameter of the y = A‐e(‐Bx) + C relationship. The VO2 max was also measured in all subjects. For the data in the field, each subject was timed over 40 m and 1 km and participated in 10‐ and 21.1‐km races. The mean critical power of die subjects in this study was 18.5 ± 1.6 km h‐1. The test‐retest correlation coefficient for the determination of critical power was r = 0.99. The mean VO2 max, measured in a progressive exercise protocol starting at 13 km h‐1 and increasing by 1 km h‐1 every minute, was 59.2 ± 4.6 ml O2 kg‐1 min‐1. The 40‐m times ranged from 5.57 to 6.95 s, the 1‐km times from 2:46 to 3:55 min:s, the 10‐km times from 30:43 to 42:02 min:s and the 21‐km times from 67:00 to 95:45 min:s. Critical power predicted running times over 1 km (r = ‐0.75, P< 0.001), 10 km (r = ‐ 0.85, P< 0.00001) and 21.1 km (r = ‐ 0.79, P< 0.001) in this heterogeneous group of runners. The correlation coefficients for VO2 max and running performances were similar to the above at all distances. Even in the best relationship between critical power and the time taken to run 10 km, only 72% of the variation in the 10‐km running time could be accounted for by differences in critical power. While the test of critical power may be repeatable and correlate significantly with VO2 max (r = 0.77, P< 0.001), the measurement lacks the degree of specificity required to predict running performance in trained subjects of varying ability.  相似文献   

2.
The purpose of this study was to investigate the relationship between running economy (RE) and performance in a homogenous group of competitive Kenyan distance runners. Maximal aerobic capacity (VO2max) (68.8 ± 3.8 ml?kg?1?min?1) was determined on a motorised treadmill in 32 Kenyan (25.3 ± 5.0 years; IAAF performance score: 993 ± 77 p) distance runners. Leg anthropometry was assessed and moment arm of the Achilles tendon determined. While Achilles moment arm was associated with better RE (r2 = 0.30, P = 0.003) and upper leg length, total leg length and total leg length to body height ratio were correlated with running performance (r = 0.42, P = 0.025; r = 0.40, P = 0.030 and r = 0.38, P = 0.043, respectively), RE and maximal time on treadmill (tmax) were not associated with running performance (r = ?0.01, P = 0.965; r = 0.27; P = 0.189, respectively) in competitive Kenyan distance runners. The dissociation between RE and running performance in this homogenous group of runners would suggest that RE can be compensated by other factors to maintain high performance levels and is in line with the idea that RE is only one of many factors explaining elite running performance.  相似文献   

3.
Abstract

The objective of this study was to investigate the effects of wearing compression socks (CS) on performance indicators and physiological responses during prolonged trail running. Eleven trained runners completed a 15.6 km trail run at a competition intensity whilst wearing or not wearing CS. Counter movement jump, maximal voluntary contraction and the oxygenation profile of vastus lateralis muscle using near-infrared spectroscopy (NIRS) method were measured before and following exercise. Run time, heart rate (HR), blood lactate concentration and ratings of perceived exertion were evaluated during the CS and non-CS sessions. No significant difference in any dependent variables was observed during the run sessions. Run times were 5681.1±503.5 and 5696.7±530.7 s for the non-CS and CS conditions, respectively. The relative intensity during CS and non-CS runs corresponded to a range of 90.5–91.5% HRmax. Although NIRS measurements such as muscle oxygen uptake and muscle blood flow significantly increased following exercise (+57.7% and + 42.6%,+59.2% and + 32.4%, respectively for the CS and non-CS sessions, P<0.05), there was no difference between the run conditions. The findings suggest that competitive runners do not gain any practical or physiological benefits from wearing CS during prolonged off-road running.  相似文献   

4.
Purpose: There is an ongoing debate whether highly trained athletes are less responsive to the ergogenic properties of nitrate. We assessed the effects of nitrate supplementation on plasma nitrate and nitrite concentrations and repeated-sprint performance in recreational, competitive and elite sprint athletes. Methods: In a randomized double-blinded cross-over design, recreational cyclists (n?=?20), national talent speed-skaters (n?=?22) and Olympic-level track cyclists (n?=?10) underwent two 6-day supplementation periods; 140?mL/d nitrate-rich (BR; ~800?mg/d) and nitrate-depleted (PLA; ~0.5?mg/d) beetroot juice. Blood samples were collected and three 30-s Wingate tests were performed. Results: Plasma nitrate and nitrite concentrations were higher following BR vs PLA (P?P?>?.10). Peak power over the three Wingates was not different between BR and PLA (1338?±?30 vs 1333?±?30 W; P?=?.62), and there was no interaction between treatment (BR-PLA) and Wingate number (1-2-3; P?=?.48). Likewise, mean power did not differ between BR and PLA (P?=?.86). In contrast, time to peak power improved by ~2.8% following BR vs PLA (P?=?.007). This improvement in BR vs PLA was not different between Wingate 1, 2 and 3. Moreover, the effects of BR vs PLA did not differ between sport levels for any Wingate parameter (all P?>?.30). Conclusion: The plasma and repeated-sprint performance responses to beetroot juice supplementation do not differ between recreational, competitive and elite sprint athletes. Beetroot juice supplementation reduces time to reach peak power, which may improve the capacity to accelerate during high-intensity and sprint tasks in recreational as well as elite athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号