首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 .利用配方法化成只含有一个的三角函数【例 1】 求函数y =sin6 x +cos6 x的最值 .解 :y =sin6 x +cos6 x=(sin2 x +cos2 x) (sin4 x -sin2 xcos2 x +cos4 x)=(sin2 x+cos2 x) 2 -3sin2 xcos2 x=1-3sin2 xcos2 x =1-34 sin2 2x=58+ 38cos4x∴当x=kπ2 (k∈z)时 ,y取最大值为 1.当x=kπ2 + π4(k∈z)时 ,y取最小值 14∴ymax =1,ymin =142 .利用函数y =x+ ax(a >0 )的单调性【例 2】 求函数y =sin2 x + 3sin2 x(x≠kπ ,k∈z)的值域 .解 :设sin2 x =t(0 相似文献   

2.
问题若实数x,y,z满足x+y+z=12,x 2+y 2+z 2=54,试求xy的最大值和最小值.[JP3]解法1:由x 2+y 2=54-z 2,可设x=54-z 2 cosθ,y=54-z 2 sinθ.[JP]则x+y+z=12,即12-z=54-z 2(sinθ+cosθ)=108-2z 2 sin(θ+π4),从而|12-z|≤108-2z 2,解得z∈[2,6].所以xy=12[(x+y)2-(x 2+y 2)]=12[(12-z)2-(54-z 2)]=z 2-12z+45.由2≤z≤6,得9≤z 2-12z+45≤25,即xy的最大值为25,最小值为9.  相似文献   

3.
1。D2。B3。C4。DS。C,八n、,。,__7一,__41 .U 6.10,.‘尧;X之;一:二-三里沁1二之;X之二-二:- j涉10。45‘+52+53+…+‘00一合(5‘+‘00,xso=3 775· (x*y)*z二(x*xy)擂,(x*0)*z=(x*O)招.又劣*0=1,1*z=1擂.故1*二=1娜.飞︺:6. 1112 (l*丁)*1=(1*少)+1, (1+y)*l=(1+y)+1.令y=x一1,则x*1=x+1.*X=男*2003年7、8月号“初二数学潜能系列知识竞赛(1)”答案…  相似文献   

4.
已知sin xcos y=1/2,求cos xsin y的最大值与最小值.错解1:令cos xsin y=t则cos xsin y+sin xcos y=t+1/2,即sin(x+y)=t+1/2.由|sin(x+y)|≤1,得|t+1/21|≤1,解得  相似文献   

5.
文 1、文 2分别利用图象法和均值代换法解决了一类在给定条件下三角函数取值范围问题 .本文利用函数的单调性来解决这类问题 (下面的例子都是文 1、2中的例题 ,以后不再说明 ) .例 1 已知 sin x+ 2 cos y=2 ,求 2 sin x+ cos y的取值范围 .解 由条件得 sin x=2 ( 1 - cos y) ,1∴ 2 sin x+ cos y=4 - 3cos y,2由 1 ,有 2 | ( 1 - cos y) | =| sin x|≤ 1 ,∴ 12 ≤cos y≤ 32 .又 | cos y|≤ 1 ,∴ 12 ≤cos y≤ 1 . 3令 t=cos y,则由 2 ,3有2 sin x+ cos y=4 - 3t,其中 t∈ [12 ,1 ].令 f( t) =4 - 3t ( 12 ≤ t≤ 1 ) .易知 f( t)在 [12…  相似文献   

6.
问题:求函数y=sin x cos x sin x cos x(x∈R)的最大值.解法1:y=sin x cos x sin x cosx2sin()1sin2=x π4 2x.当x π4=2kπ π2,即x=2kπ π4(k∈Z)时,2sin(x π/4)取得最大值2;当2x=2kπ π2,即x=kπ π4(k∈Z)时,sin2x/2取得最大值1/2;故当x=2kπ π/4(k∈Z)时,2sin(x π/4)  相似文献   

7.
一个新发现的三角不等式   总被引:2,自引:2,他引:0  
苏张延卫、陕西苟春鹏两位老师分别证明 3以下三角不等式 :在△ ABC中 ,有sin A 2 sin B2 3sin C3≤ 3,(1)cos A 2 cos B2 3cos C3≤ 3 3 . (2 )受文 [1]的启发 ,本文作者证得一个类似的新结果 :cot A 2 cot B2 3cot C3≥ 6 3. (3)其实 ,我们有下述定理 在△ABC中 ,对 k≥ 1有cot Ak 2 cot B2 k 3cot C3k≥ 6 cotπ6 k,(4 )等号成立当且仅当 A=π6 ,B=π3.证明 若 x>0 ,y>,且 x y<π,则cotx coty=sin(x y)sinxsiny=2 sin(x y)cos(x- y) - cos(x y)≥ 2 sin(x y)1- cos(x y) =2 cotx y2 .∴cot AR 2 cot B2 …  相似文献   

8.
中学数学中有些问题,直接解答往往受阻,如果能恰当地运用对称思想,可使问题容易解决,同时也给人以美的享受.本文通过几例,介绍它在解题中的几种巧用.一、解三角问题例1.求cosπ7cos2π7cos3π7的值.解:设x=cosπ7cos2π7cos3π7,y=sinπ7sin2π7sin3π7,则xy=18sin2π7sin4π7sin6π7=18sinπ7sin2π7sin3π7=18y.∵y≠0,∴x=18,即cosπ7cos2π7cos3π7=18.点评:这类三角问题常见,若用常规解法难而繁,这里我们挖掘问题潜在的对称性,构造出对称式,使问题得以轻松解决.二、解复数问题例2.已知z∈C,解方程zz-3iz=1+3i.〔1992年高考(理)题24〕…  相似文献   

9.
题目给定曲线族()22sinθ?cosθ 3x2?(8sinθ cosθ 1)y=0,θ为参数,求该曲线族在直线y=2x上所截得的弦长的最大值.(1995年全国高中数学联赛第2试试题)解曲线族与直线y=2x相交于原点O(0,0)和另一交点为()P x0,y0,显然x0≠0,并且x0,y0满足方程()()2228y0?4x0sinθ y0 2x0cosθ=6x0?y0,构造向量()22a=8y0?4x0,y0 2x0,b=(sinθ,cosθ),由?a b≤a?b≤a b,即a?b2≤a2b2(当且仅当a,b共线时取等号),得[(8y0?4x02)?sinθ (y0 2x02)?cosθ]222222222≤[(8y0?4x0) (y0 2x0)](sinθ cosθ),即(6x02?y0)2≤(8y0?4x02)2 (y0 2x02)2(*),把y0=2x0代入(*)并…  相似文献   

10.
例1:求y=4sinxcos2x的最值.解:y2=16sin2xcos4x=8(2sin2x)cos2xcos2x≤8(2sin2x cos2x cos2x3)3=8(23)2=2674.当且仅当2sin2x=cos2x,即tg2x=12时,等号成立.当tgx=-姨22时,ymin=-8姨93;当tgx=姨22时,ymax=8姨93.[评注:巧用sin2x cos2x=1和16sin2xcos4x=8(2sin2x)cos2xcos2x变形.]例2:某厂要生产一批无盖的圆柱形桶,每个桶容积为32πm2,用来做底面的塑料3元/m2,做侧面的塑料2元/m2,如何设计它的底面半径和高,才能使成本最低.解:设圆柱形桶的底面半径为r,高为h,成本为y.则:y=3πr2 2×2πrh=π(3r2 4rh)=π(3r2 2rh 2rh)=π×3姨33r2 2rh 2rh=3…  相似文献   

11.
一、知识归纳 1.任意角的三角函数 ①定义:设P(x,y)是角α终边上的任意一点,且|OP|=r(r>0),则 sinα=y/r,cosα=x/r,tanα=y/x,cotα=x/y,secα=r/x,cscα=r/y. ②符号法则 ③同角三角函数关系: sin2α+cos2α=1, cosα·secα=1, tanα=sinα/cosα, ④诱导公式: 1+tan2α=sec2α. sinα·cscα=1, cotα=cosα/sinα. 1+cot2α=csc2α, tanα·cotα=1,  相似文献   

12.
求函数y=x·(1-x2)~(1/2)(0相似文献   

13.
【题】已知ccooss42βα ssiinn42βα=1,求证:ccooss42αβ ssiinn24αβ=1.法1(三角换元)∵ccooss2βα2 ssiinn2βα2=1,∴可设ccooss2βα=sinφ,ssiinn2βα=cosφ,则sinφcosβ cosφsinβ=cos2α sin2α=1,∴sin(φ β)=1,∴φ β=2π 2kπ,k∈Z,∴sinφ=sin2π-β 2kπ=cosβ,同理,cosφ=sinβ,∴cos2α=cos2β,sin2α=sin2β,∴ccooss42αβ ssiinn24αβ=cos2β sin2β=1.法2(巧构直线与圆相切模型)由已知Accooss2βα,ssiinn2βα,B(cosβ,sinβ)都在单位圆x2 y2=1上,圆x2 y2=1过点B的切线方程l是cosβx sinβy=1,A点也满足此…  相似文献   

14.
一、构造函数例1设α、m为常数,θ是任意实数,求证:眼cos(θ+α)+mcosθ演2≤1+2mcosα+m2.证明构造函数y=f(θ)=1+2mcosα+m2-眼cos(θ+α)+mcosθ演2,则只需证明y≥0即可.f(θ)=sin2(θ+α)+2m眼cosα-cosθcos(θ+α)演+m2sin2θ.令sin(θ+α)=x,则得二次函数y=x2+2msinθ·x+m2sin2θ.由于Δ=4m2sin2θ-4m2sin2θ=0,且二次项系数为1,故y≥0,即原不等式成立.二、构造数列例2已知:sinφcosφ=60169,π4<φ<π2,求sinφ、cosφ的值.解由题意可知,sinφcosφ=(215姨13)2且sinφ>cosφ,构造等比数列cosφ,215姨13,sinφ.设sinφ=215姨13·q,c…  相似文献   

15.
一、选择题 :( 1)~ ( 12 ) . DBDAB CA DBB DC.二、填空题 :( 13) - 2 .  ( 14 ) 6 .  ( 15) y - 4x + 4=0 .  ( 16 ) 4 .三、解答题( 17)本小题主要考查三角函数的基本性质和恒等变换的基本技能 ,考查运算能力 .解 :y =sin4 x + 2 3sinxcosx - cos4 x =( sin2 x + cos2 x) ( sin2 x - cos2 x) + 3sin2 x =3sin2 x - cos2 x =2 sin( 2 x - π6 ) .故该函数的最小正周期是π,最小值是 - 2 ;单增区间是 [0 ,13π] ,[5π6 ,π] .( 18)本小题主要考查互斥事件、独立事件和独立重复试验中的概率计算 ,以及运用概率知识解决实际问题的能…  相似文献   

16.
第 31届西班牙数学奥林匹克第 2题是 :证明 :如果 ( x+ x2 + 1 ) ( y+ y2 + 1 )= 1 ,那么 x+ y=0 .文 [1 ]给出了此题的一种证法 ,本文再给出此题的两种换元证法 ,然后给出一个新命题 .证法 1 设 x=tanα,y=tanβ,其中 α,β∈ ( - π2 ,π2 ) ,则由条件知 ,( tanα+ secα) ( tanβ+ secβ) =1 ( sinα+ 1 ) ( sinβ+ 1 ) =cosαcosβ sinα+sinβ+ 1 =cos(α+β) 2 sinα+β2 cosα-β2 +1 =1 - 2 sin2 α+β2 sin α+β2 ( sin α+β2 +sinπ-α+β2 ) =0 sin α+β2 sin 2β+π4 ·cos2α-π4 =0 .又由 α,β∈ ( - π2 ,π2 ) ,知…  相似文献   

17.
三角代换巧解不等式问题,即根据题目的特点,选取恰当的三角代换,能达到化难为易,化繁为简的目的,它是解不等式问题常用的方法,现举例说明. 例1 已知a,b,x,y∈R,且a2 +b2=1,x2+y2=1,求ax+ by的范围. 解:通过观察已知条件我们不难发现:令{a=sinα,b=cosα,{x=sinβ,y=cosβ,则ax+by=sinαsinβ+cosαcosβ=cos(α-β).  相似文献   

18.
一、对于含有代数式a2-x2√的函数或方程,可设x=acosα(0≤α≤π)或x=asinα(-π2≤α≤π2).例1已知x1-y2√+y1-x2√=1,求u=x+y的取值范围.解由题意可知0≤x≤1,0≤y≤1,不妨设x=cosα,y=cosβ(0≤α≤π2,0≤β≤π2),代入已知条件中得cosα1-cos2β√+cosβ1-cos2α√=1,即sin(α+β)=1.∵0≤α≤π2,0≤β≤π2,0≤α+β≤π,∴α+β=π2,β=π2-α,∴u=x+y=cosα+cosβ=cosα+cos(π2-α)=cosα+sinα=2√sin(α+π4).∵π4≤α+π4≤34π,2√2≤sin(α+π4)≤1,即1≤2√sin(α+π4)≤2√,∴u=x+y的取值范围是犤1,2√犦.二、对于含有…  相似文献   

19.
第四章多元函数微分学一、主要教学内容1.多元函数的基本概念主要是二元函数,其概念的要素还是对应关系与定义域,二元函数的定义域是平面上的某个区域,对应关系一般表示为:z=f(x,y) (x,y)∈D例如,设 z=f(x,y)=sin(x y)则 f(0,0)=sin(0 0)=sin0=0f(π/2,π/2)=sin(π/2 π/2)=sin=0f(t,s)=sin(t s)2.偏导数与全微分设 z=f(x,y),则  相似文献   

20.
一些三角恒等式在证明代数问题方面有着广泛的应用 .下面介绍几种中学数学中常见的代换法 ,供同行和读者参考 .一、若m n=1,m、n >0 ,可令m =sin2 α ,n =cos2 α .例 1 已知x、y >0 ,且x y=1,A =ax by ,B =ay bx ,试比较AB与ab的大小 .解 令x=cos2 α ,y=sin2 α ,则AB -ab =(ax by) (ay bx) -ab=(a2 b2 )xy ab(x2 y2 ) -ab=(a2 b2 )cos2 αsin2 α ab(cos4 α  sin4 α) -ab=(a-b) 2 cos2 αsin2 α≥ 0 ,∴AB ≥ab .二、若m2 n2 =1,可令m =sinα ,n=cosα ,例 2 设a2 b2 =1,x2 y2 =1,求ax by的取值范围 .解 令a =sinα…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号