首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

An analysis system for barbell weightlifting exercises is proposed to record reliable performance and neuromuscular responses. The system consists of surface electromyography (sEMG) synchronized with electrogoniometry and a barbell position transducer. The purpose of this study was to establish the reliability of the three components of the system. Nine males (age 28.9 ± 4.8 years, mass 85.7 ± 15.1 kg) performed squat exercise at three loads on three separate trial days. A data acquisition and software system processed maximal knee angle (flexion), mean power for the concentric phase of squat exercise, and normalized root mean square of the vastus lateralis. Inter-trial coefficients of variation for each variable were calculated as 5.3%, 7.8%, and 7.5% respectively. In addition, knee joint motion and barbell displacement were significantly related to each other (bar displacement (m) = 1.39–0.0057 × knee angle (degress), with goodness-of-fit value, r 2 = 0.817), suggesting knee goniometry alone can represent the kinematics of a multi-joint squat exercise. The proven reliability of the three components of this system allows for real-time monitoring of resistance exercise using the preferred training methods of athletes, which could be valuable in the understanding of the neuromuscular response of elite strength training methods.  相似文献   

2.
This study analysed the validity and reliability of a new optoelectronic device (Velowin) for the measurement of vertical displacement and velocity as well as to estimate force and mechanical power. Eleven trained males with Mean (SD) age = 27.4 (4.8) years, completed an incremental squat exercise test with 5 different loads (<30–90% of their 1?repetition maximum) while displacement and vertical velocity of the barbell were simultaneously measured using an integrated 3D system (3D motion capture system + force platform) and Velowin. Substantial to almost perfect correlation (concordance correlation coefficient = 0.75–0.96), root mean square error as coefficient of variation ±90% confidence interval ≤10% and good to excellent intraclass correlation coefficient = 0.84–0.99 were determined for all the variables. Passing and Bablock regression methods revealed no differences for average velocity. However, significant but consistent bias were determined for average or peak force and power while systematic and not proportional bias was found for displacement. In conclusion, Velowin, in holds of some potential advantages over traditionally used accelerometer or linear transducers, represents a valid and reliable alternative to monitor vertical displacement and velocity as well as to estimate average force and mechanical power during the squat exercise.  相似文献   

3.
Abstract

The barbell back squat is commonly used by athletes participating in resistance training. The barbell squat is typically performed using standard athletic shoes, or specially designed weightlifting footwear, although there are now a large number of athletes who prefer to squat barefoot or in barefoot-inspired footwear. This study aimed to determine how these footwear influence 3-D kinematics and muscle activation potentials during the barbell back squat. Fourteen experienced male participants completed squats at 70% 1 rep max in each footwear condition. 3-D kinematics from the torso, hip, knee and ankle were measured using an eight-camera motion analysis system. In addition, electromyographical (EMG) measurements were obtained from the rectus femoris, tibialis anterior, gastrocnemius, erector spinae and biceps femoris muscles. EMG parameters and joint kinematics were compared between footwear using repeated-measures analyses of variance. Participants were also asked to subjectively rate which footwear they preferred when performing their squat lifts; this was examined a chi-squared test. The kinematic analysis indicated that, in comparison to barefoot the running shoe was associated with increased squat depth, knee flexion and rectus femoris activation. The chi-squared test was significant and showed that participants preferred to squat barefoot. This study supports anecdotal evidence of athletes who prefer to train barefoot or in barefoot-inspired footwear although no biomechanical evidence was found to support this notion.  相似文献   

4.
The purpose of this study was twofold: (1) to determine the barbell load that maximised the system power as well as the ankle, knee, and hip joint powers during the squat jump, and (2) to compare the system powers computed from two different methods: the centre of mass (COM) method and the barbell method. Seven male throwers were recruited in this study. The system power (COM method) and the ankle, knee, and hip joint powers were determined with the load incrementally set at 0%, 10%, 30%, 50%, 70%, and 90% of one repetition maximum. The largest system power was observed at the load of 30% (p < 0.008) while the largest ankle and knee powers were observed at 70% and 0% (p < 0.05). The barbell method overestimated the system power (p < 0.001) when compared to the COM method. It was concluded that the barbell method could influence load optimisation in squat jump. The optimal barbell load which maximised the system power did not maximise the ankle, knee, or hip power simultaneously.  相似文献   

5.
The aim of this study was to examine changes in indirect markers of muscle damage during 3 weeks of stretch-shortening exercise with a progressively increasing load and continued modulation of various key training variables. Eight healthy untrained men performed a drop-jump programme involving a progressive increase in load impact with respect to the number of jumps performed, drop (platform) height, squat depth amplitude, and addition of weights. Maximal concentric and isometric knee extensor strength were assessed immediately before and 10?min after each training session. Voluntary and 100 Hz-stimulation-evoked torque decreased acutely after each training session relative to pre-exercise values (P?相似文献   

6.
Hip extensor strategy, specifically relative contribution of gluteus maximus versus hamstrings, will influence quadriceps effort required during squat exercise, as hamstrings and quadriceps co-contract at the knee. This research examined the effects of hip extensor strategy on quadriceps relative muscular effort (RME) during barbell squat. Inverse dynamics-based torque-driven musculoskeletal models were developed to account for hamstrings co-contraction. Net joint moments were calculated using 3D motion analysis and force platform data. Hamstrings co-contraction was modelled under two assumptions: (1) equivalent gluteus maximus and hamstrings activation (Model 1) and (2) preferential gluteus maximus activation (Model 2). Quadriceps RME, the ratio of quadriceps moment to maximum knee extensor strength, was determined using inverse dynamics only, Model 1 and Model 2. Quadriceps RME was greater in both Models 1 and 2 than inverse dynamics only at barbell loads of 50–90% one repetition maximum. The highest quadriceps RMEs were 120 ± 36% and 87 ± 28% in Models 1 and 2, respectively, which suggests that barbell squats are only feasible using the Model 2 strategy prioritising gluteus maximus versus hamstrings activation. These results indicate that developing strength in both gluteus maximus and quadriceps is essential for lifting heavy loads in squat exercise.  相似文献   

7.
朱明 《冰雪运动》2015,(2):89-96
为满足在运动训练过程中的人体三维空间技术特征研究的需要,开发一套三轴向加速度传感器系统.该系统由下位机和上位机两部分组成,其中下位机部分由加速度传感器、传感器拾取单元、数据处理单元、电源监测与保护单元和无线传输单元组成,上位机部分由数据采集和分析软件组成.该系统具有四通道同步采集功能,结合同步视频,可对运动员的肢体关节、比赛训练器械等技术组成要素进行运动学和动力学参数进行实时采集与分析.以体育训练中常用的杠铃深蹲训练为实验性应用领域,对速滑和举重两种项目的杠铃深蹲训练进行技术分析,通过对三轴加速度传感器采集数据的分析,找出不同项目间杠铃深蹲动作技术的特征与差异,为今后深入开展加速度传感器系统的开发与相关应用提供研究基础.  相似文献   

8.
Nine males (age 24.7 ± 2.1 years, height 175.3 ± 5.5 cm, body mass 80.8 ± 7.2 kg, power clean 1-RM 97.1 ± 6.36 kg, squat 1-RM = 138.3 ± 20.9 kg) participated in this study. On day 1, the participants performed a one-repetition maximum (1-RM) in the power clean and the squat. On days 2, 3, and 4, participants performed the power clean, squat or jump squat. Loading for the power clean ranged from 30% to 90% of the participant's power clean 1-RM and loading for the squat and jump squat ranged from 0% to 90% of the participant's squat 1-RM, all at 10% increments. Peak force, velocity, and power were calculated for the bar, body, and system (bar + body) for all power clean, squat, and jump squat trials. Results indicate that peak power for the bar, body, and system is differentially affected by load and movement pattern. When using the power clean, squat or jump squat for training, the optimal load in each exercise may vary. Throwing athletes or weightlifters may be most concerned with bar power, but jumpers or sprinters may be more concerned with body or system power. Thus, the exercise type and load vary according to the desired stimulus.  相似文献   

9.
Much of the training of competitive telemark skiers is performed as dry-land exercises. The specificity of these exercises is important for optimizing the training effect. Our aim here was to study the activation of the knee extensor musculature and knee angular displacement during competitive telemark skiing and during dry-land strength training exercises to determine the specificity of the latter. Specificity was analysed with respect to angular amplitude, angular velocity, muscle action and electromyographic (EMG) activity. Five male telemark skiers of national and international standard volunteered to participate in the study, which consisted of two parts: (1) skiing a telemark ski course and (2) specific dry-land strength training exercises for telemark skiing (telemark jumps and barbell squats). The angular displacement of the right knee joint was recorded with an electrogoniometer. A tape pressure sensor was used to measure pressure between the sole of the foot and the bottom of the right ski boot. Electromyographic activity in the right vastus lateralis was recorded with surface electrodes. The EMG activity recorded during maximum countermovement jumps was used to normalize the EMG activity during telemark skiing, telemark jumps and barbell squats. The results showed that knee angular displacement during telemark skiing and dry-land telemark jumps had four distinct phases: a flexion (F1) and extension (E1) phase during the thrust phase of the outside ski/leg in the turn/jump and a flexion (F2) and extension (E2) phase when the leg was on the inside of the turn/jump. The vastus lateralis muscle was activated during F1 and E1 in the thrust phase during telemark skiing and telemark jumps. The overall net knee angular amplitude was significantly greater (P < 0.05) for telemark jumps than for telemark skiing. Barbell squats showed a knee angular amplitude significantly greater than that in telemark skiing (P < 0.05). The mean knee angular velocity of the F1 and E1 phases during telemark skiing was about 0.47 rad x s(-1); during barbell squats, it was about 1.22 rad x s(-1). The angular velocity during telemark jumps was 2.34 and 1.59 rad x s(-1) in the F1 and E1 phase, respectively. The normalized activation level of the EMG bursts during telemark skiing, telemark jumps and barbell squats was 70-80%. In conclusion, the muscle action and level of activation in the vastus lateralis during the F1 and E1 phases were similar during telemark skiing and dry-land exercises. However, the dry-land exercises showed a larger knee extension and flexion amplitude and angular velocity compared with telemark skiing. It appears that an adjustment of knee angular velocity during barbell squats and an adjustment of knee angle amplitude during both telemark jumps and barbell squats will improve specificity during training.  相似文献   

10.
An analytical biomechanical model was developed to establish the relevant properties of the Smith squat exercise, and the main differences from the free barbell squat. The Smith squat may be largely patterned to modulate the distributions of muscle activities and joint loadings. For a given value of the included knee angle (θ(knee)), bending the trunk forward, moving the feet forward in front of the knees, and displacing the weight distribution towards the forefoot emphasizes hip and lumbosacral torques, while also reducing knee torque and compressive tibiofemoral and patellofemoral forces (and vice versa). The tibiofemoral shear force φ(t) displays more complex trends that strongly depend on θ(knee). Notably, for 180° ≥ θ(knee) ≥ 130°, φ(t) and cruciate ligament strain forces can be suppressed by selecting proper pairs of ankle and hip angles. Loading of the posterior cruciate ligament increases (decreases) in the range 180° ≥ θ(knee) ≥ 150° (θ(knee) ≤ 130°) with knee extension, bending the trunk forward, and moving the feet forward in front of the knees. In the range 150° > θ(knee) > 130°, the behaviour changes depending on the foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are explained. This work enables careful use of the Smith squat in strengthening and rehabilitation programmes.  相似文献   

11.
Much of the training of competitive telemark skiers is performed as dry-land exercises. The specificity of these exercises is important for optimizing the training effect. Our aim here was to study the activation of the knee extensor musculature and knee angular displacement during competitive telemark skiing and during dry-land strength training exercises to determine the specificity of the latter. Specificity was analysed with respect to angular amplitude, angular velocity, muscle action and electromyographic (EMG) activity. Five male telemark skiers of national and international standard volunteered to participate in the study, which consisted of two parts: (1) skiing a telemark ski course and (2) specific dry-land strength training exercises for telemark skiing (telemark jumps and barbell squats). The angular displacement of the right knee joint was recorded with an electrogoniometer. A tape pressure sensor was used to measure pressure between the sole of the foot and the bottom of the right ski boot. Electromyographic activity in the right vastus lateralis was recorded with surface electrodes. The EMG activity recorded during maximum countermovement jumps was used to normalize the EMG activity during telemark skiing, telemark jumps and barbell squats. The results showed that knee angular displacement during telemark skiing and dry-land telemark jumps had four distinct phases: a flexion (F1) and extension (E1) phase during the thrust phase of the outside ski/leg in the turn/jump and a flexion (F2) and extension (E2) phase when the leg was on the inside of the turn/jump. The vastus lateralis muscle was activated during F1 and E1 in the thrust phase during telemark skiing and telemark jumps. The overall net knee angular amplitude was significantly greater (P<0.05) for telemark jumps than for telemark skiing. Barbell squats showed a knee angular amplitude significantly greater than that in telemark skiing (P<0.05). The mean knee angular velocity of the F1 and E1 phases during telemark skiing was about 0.47 rad?·?s?1; during barbell squats, it was about 1.22 rad?·?s?1. The angular velocity during telemark jumps was 2.34 and 1.59 rad?·?s?1 in the F1 and E1 phase, respectively. The normalized activation level of the EMG bursts during telemark skiing, telemark jumps and barbell squats was 70–80%. In conclusion, the muscle action and level of activation in the vastus lateralis during the F1 and E1 phases were similar during telemark skiing and dry-land exercises. However, the dry-land exercises showed a larger knee extension and flexion amplitude and angular velocity compared with telemark skiing. It appears that an adjustment of knee angular velocity during barbell squats and an adjustment of knee angle amplitude during both telemark jumps and barbell squats will improve specificity during training.  相似文献   

12.
孟宪娟 《冰雪运动》2008,30(3):53-55
通过膝关节载荷静力学分析,进一步认识了杠铃力量训练过程中膝关节的力学特点和变化规律。并基于膝关节载荷静力学分析,探讨了杠铃力量训练在力量练习结构、练习方式和练习动作方面的专项化问题。认为杠铃力量训练可以帮助运动员建立专项最需要的力量结构;可以通过不同的练习方式使那些对专项技术最具影响的肌肉或肌群得到训练;力量训练需要紧密结合专项特点,才能获得更好的效果。  相似文献   

13.
Isometric multi-joint tests are considered reliable and have strong relationships with 1RM performance. However, limited evidence is available for the isometric squat in terms of effects of familiarization and reliability. This study aimed to assess, the effect of familiarization, stability reliability, determine the smallest detectible difference, and the correlation of the isometric squat test with 1RM squat performance. Thirty-six strength-trained participants volunteered to take part in this study. Following three familiarization sessions, test–retest reliability was evaluated with a 48-hour window between each time point. Isometric squat peak, net and relative force were assessed. Results showed three familiarizations were required, isometric squat had a high level of stability reliability and smallest detectible difference of 11% for peak and relative force. Isometric strength at a knee angle of ninety degrees had a strong significant relationship with 1RM squat performance. In conclusion, the isometric squat is a valid test to assess multi-joint strength and can discriminate between strong and weak 1RM squat performance. Changes greater than 11% in peak and relative isometric squat performance should be considered as meaningful in participants who are familiar with the test.  相似文献   

14.
The purpose of this research was to investigate how lower extremity work was distributed during the pull of cleans performed lifting the barbell to the minimum height required to receive it in a full squat (minimal height clean); or with maximum effort to elevate the barbell as high as possible and receiving it in either a full (maximal effort clean) or partial (power clean) squat. Eight weightlifters screened for proficient technique performed these clean variations at 80% of one repetition maximum. Work performed on the barbell and by the lower extremity net joint moments (NJM) was computed from marker trajectories and ground reaction forces. Total barbell work, lower extremity NJM work, knee extensor work, and knee joint excursion during the second pull was lower in the minimal height clean than the maximal effort and power cleans (P < 0.05). This research demonstrates that more knee extensor work is performed in the second pull of maximal effort and power cleans compared to the minimal height clean. The larger knee extensor work performed is due to larger knee joint excursion during the second pull of the maximal effort and power cleans, but not larger knee extensor NJM.  相似文献   

15.
Dynamic squat is one of the most executed fitness exercise. Its use is widespread both for rehabilitation and training purposes. Several typologies of the squat exercise can be performed. The most important are the front squat and the back squat. In the front squat the barbell is held in front of the body across the clavicles and deltoids, while in the back squat exercise the bar is held on the back of the body at the base of the neck. In this paper we will refer to dynamic back squat. The squat exercise can be performed with or without the help of a machine that has the scope of guiding the person during the movement and ensuring his stability and safety. The use of this type of machine is often necessary when the workout is heavy and the risk of incorrect exercise and injuries is high. On the other hand, the rigid structure of this device often overconstrains the lifting movement. From all these observations, the purpose of the paper is to discuss an alternative design of a mechanism able to maintain the advantage to allow a free-body execution and to preserve the safety of the athletes as well. The proposed mechanism has been designed starting from an anthropometric study on the squat movement. This has been performed by using a motion capture system and applying computer-aided engineering techniques. The design activity started from the experimental investigation of the trajectory of the barbell during the natural execution of the unrestricted back squat exercise. The tests have been performed on several subjects with different mass, anthropometry and gender. In a second phase, the data have been processed and analyzed and a specific mechanism, able to reproduce the natural trajectories, has been synthetized. Finally, the design and optimization of the entire structure has been performed through the use of virtual prototyping techniques.  相似文献   

16.
The purpose of this study was to compare the knee extensor demands and low back injury risks of the front and back squat exercises. Highly strength-trained college-aged males (n = 8), who performed each type of squat (Load = 75% of front squat one repetition maximum), were filmed (50 fps) from the sagittal view. The body was modeled as a five link system. Film data were digitized and reduced through Newtonian mechanics to obtain joint forces and muscle moments. Mean and individual subject data results were examined. The maximum knee extensor moment comparison indicated similar knee extensor demands, so either squat exercise could be used to develop knee extensor strength. Both exercises had similar low back injury risks for four subjects, but sizable maximum trunk extensor moment and maximum lumbar compressive and shear force differences existed between the squat types for the other subjects. The latter data revealed that with the influence of trunk inclination either exercise had the greatest low back injury risk (i.e., with greater trunk inclination: greater trunk extensor demands and lumbar shear forces, but smaller lumbar compressive forces). For these four subjects low back injury risk was influenced more by trunk inclination than squat exercise type.  相似文献   

17.
试论当前力量训练范畴的新观点   总被引:5,自引:0,他引:5  
力量分类的细化是当代力量训练的显著特点,它促使力量训练的任务、方法、要求和检测等全面的日趋细化。几乎所有的周期耐力性项目的教练员均加强了对力量训练的重视程度,力量已被视为增加有氧训练比例兼顾能量供应和神经———肌肉系统衔接有氧与无氧能力的中介。专项力量的训练是当代力量训练的核心,发展专项力量不仅应采用负重的专项技术练习,而且更重要的是改进杠铃训练使其在练习形式、负荷和力度上尽可能接近专项。  相似文献   

18.
力量分类的细化是当代力量训练的显著特点,它促使力量训练在任务、方法、要求和检测等方面的日趋细化。几乎所有的周期耐力性项目的教练员均加强了对力量训练的重视程度,力量己被视为增加有氧训练比例兼顾能量供应和神经——肌肉系统衔接有氧与无氧能力的中介。专项力量的训练是当代力量训练的核心,发展专项力量不仅应采用负重的专项技术练习,而且更重要的是改进杠铃训练使其在练习形式、负荷和力度上尽可能接近专项。  相似文献   

19.
This study compared knee angle-specific neuromuscular adaptations after two low-volume isometric leg press complex training programmes performed at different muscle lengths. Fifteen young males were divided into two groups and trained three times per week for 6 weeks. One group (n?=?8) performed 5–7 sets of 3 s maximum isometric leg press exercise, with 4?min recovery, with knee angle at 85°?±?2° (longer muscle-tendon unit length; L-MTU). The other group (n?=?7) performed the same isometric training at a knee angle of 145°?±?2° (180°?=?full extension; shorter muscle-tendon unit length; S-MTU). During the recovery after each set of isometric exercise, participants performed two CMJ every minute, as a form of complex training. Maximum isometric force (MIF) and rate of force development (RFD) were measured over a wide range of knee angles. Countermovement jump (CMJ) performance and maximum half-squat strength (1RM) were also assessed. Training at S-MTU induced a large increase of MIF (22–58%, p?p?p?=?0.001). In contrast, training at L-MTU, resulted in a moderate and similar (≈12.3%, p?=?0.028) improvement of force at all knee angles. CMJ performance and 1RM were equally increased in both groups after training by 10.4%?±?8.3% and 7.8%?±?4.7% (p?相似文献   

20.
The purpose of this investigation was to compare valgus/varus knee angles during various jumps and lower body strength between males and females relative to body mass. Seventeen recreationally active females (age: 21.94 ± 2.59 years; height: 1.67 ± 0.05 m; mass: 64.42 ± 8.39 kg; percent body fat: 26.89 ± 6.26%; squat one-repetition maximum: 66.18 ± 19.47 kg; squat to body mass ratio: 1.03 ± 0.28) and 13 recreationally active males (age: 21.69 ± 1.65 years; height: 1.77 ± 0.07 m; mass: 72.39 ± 9.23 kg; percent body fat: 13.15 ± 5.18%; squat one-repetition maximum: 115.77 ± 30.40 kg; squat to body mass ratio: 1.59 ± 0.31) performed a one-repetition maximum in the squat and three of each of the following jumps: countermovement jump, 30 cm drop jump, 45 cm drop jump, and 60 cm drop jump. Knee angles were analysed using videography and body composition was analysed by dual-energy X-ray absorptiometry to allow for squat to body mass ratio and squat to fat free mass ratio to be calculated. Significant differences (P ≤ 0.05) were found between male and female one-repetition maximum, male and female squat to body mass ratio, and male and female squat to fat free mass ratio. Significant differences were found between male and female varus/valgus knee positions during maximum flexion of the right and left leg in the countermovement jump, drop jump from 30 cm, drop jump from 45 cm, and drop jump from 60 cm. Correlations between varus/valgus knee angles and squat to body mass ratio for all jumps displayed moderate, non-significant relationships (countermovement jump: r = 0.445; drop jump from 30 cm: r = 0.448; drop jump from 45 cm: r = 0.449; drop jump from 60 cm: r = 0.439). In conclusion, males and females have significantly different lower body strength and varus/valgus knee position when landing from jumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号