首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Does studying about the nature(s) of science contribute to a prospective teachers' effectiveness as a science teacher? This research grew out of a course created by a science educator and historian of science who believed prospective teachers needed more complex understandings of the cultural wars surrounding science. The research team consisted of five prospective teachers who participated in the course as well as the two instructors. This paper describes the experience of participating in the course from both perspectives. We argue that studying the cultural wars over science contributes to prospective teachers' professional growth as much because the course elicits tacit beliefs about school science as it introduces more complex understandings of science. We found that prospective teachers' tacit beliefs about school science were their greatest barrier to developing more complex understandings about the nature(s) of science. We contend that willingness to grapple with complexity and developing a professional identity by locating oneself in the conversations about the nature(s) of science are better criteria for determining the professional growth of prospective teachers than knowledge measures. Finally, we argue that prospective teachers should be viewed as professionals who are responsible for finding their own voice, making their own decisions, and considering the consequences of their beliefs on their practice. This study raises questions critical to teacher education programs for prospective teachers and teacher‐educators alike. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 895–915, 2000  相似文献   

2.
Written and oral communications and the processes of writing and reading are highly valued within the scientific community; scientists who communicate well are successful in gaining recognition and support from members of their own communities, the research funding agencies, and the wider society. Yet how do scientists achieve this proficiency? Are expert scientists equally expert writers in and of science? Do scientists' perceptions of the nature of science influence their writing strategies and processes, and their beliefs about the role of writing in knowledge construction? This study used a questionnaire and semistructured interviews to document these perceptions, strategies, processes, and beliefs in a nonrandom sample of Canadian university scientists and engineers. The results indicate that the scientists subscribed to a contemporary evaluativist view of science, used common writing strategies, held similar beliefs about scientific writing and nonscientific writing, and agreed that writing generates insights and clarifies ambiguity in science. The engineers held a different view of technology than the common views of science or technology as simply applied science. These findings were slightly different than those found for American scientists from a large land‐grant university. © 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 338–369, 2004  相似文献   

3.
Every aspect of teaching, including the instructional method, the course content, and the types of assessments, is influenced by teachers’ attitudes and beliefs. Teacher education programs play an important role in the development of beliefs regarding teaching and learning. The purpose of the study was to document pre-service teachers’ views on science, scientists, and science teaching as well as the relations between these views and the offered courses over several years spent in an elementary science teacher training program. The sample consisted of 145 pre-service elementary science teachers who were being trained to teach general science to students in the 6th through 8th grades. The research design was a cross-sectional study. Three different instruments were used to collect the data, namely, the “Draw a Scientist Test”, “Draw a Science Teacher Test”, and “Students’ Views about Science” tests. The elementary science teacher training program influenced pre-service science teachers’ views about science, scientists and science teaching to different degrees. The most pronounced impact of the program was on views about science teaching. Participants’ impressions of science teaching changed from teacher-centered views to student-centered ones. In contrast, participants’ views about scientists and science did not change much. This result could be interpreted as indicating that science teacher training programs do not change views about science and scientists but do change beliefs regarding teaching science.  相似文献   

4.
Students' epistemological beliefs about scientific knowledge and practice are one important influence on their approach to learning. This article explores the effects that students' inquiry during a 4‐week technology‐supported unit on evolution and natural selection had on their beliefs about the nature of science. Before and after the study, 8 students were interviewed using the Nature of Science interview developed by Carey and colleagues. Overall, students held a view of science as a search for right answers about the world. Yet, the inconsistency of individuals' responses undermines the assumption that students have stable, coherent epistemological frameworks. Students' expressed ideas did not change over the course of the intervention, suggesting important differences between students' talk during inquiry and their abilities to talk epistemologically about science. Combined with previous work, our findings emphasize the crucial role of an explicit epistemic discourse in developing students' epistemological understanding. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 369–392, 2003  相似文献   

5.
The purpose of this study was to explicate the impact of an 8‐week science apprenticeship program on a group of high‐ability secondary students' understandings of the nature of science and scientific inquiry. Ten volunteers (Grades 10–11) completed a modified version of the Views of Nature of Science, Form B both before and after their apprenticeship to assess their conceptions of key aspects of the nature of science and scientific inquiry. Semistructured exit interviews provided an opportunity for students to describe the nature of their apprenticeship experiences and elaborate on their written questionnaire responses. Semistructured exit interviews were also conducted with the scientists who served as mentors for each of the science apprentices. For the most part, students held conceptions about the nature of science and scientific inquiry that were inconsistent with those described in current reforms. Participating science mentors held strong convictions that their apprentices had learned much about the scientific enterprise in the course of doing the science in their apprenticeship. Although most students did appear to gain knowledge about the processes of scientific inquiry, their conceptions about key aspects of the nature of science remained virtually unchanged. Epistemic demand and reflection appeared to be crucial components in the single case where a participant experienced substantial gains in her understandings of the nature of science and inquiry. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 487–509, 2003  相似文献   

6.
Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers’ beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists’ work and the ways in which science and society influence each other.  相似文献   

7.
This research examines factors influencing elementary science teacher learning as they participate in professional development with and enactment of educative curricula in comparison with learning following limited professional development and enactment of traditional curricula. Using a randomized cluster design (125 teachers and 2,694 students in 4th—5th grades) that met the What Works Clearinghouse standards without reservations, teacher learning was conceptualized using four outcomes. Data were analyzed using standard single-level multiple regression models and possible mediation models for the teacher outcomes were considered using piecewise multiple regression and path analytic approaches. Treatment group teachers experienced greater increases in content knowledge, views of science inquiry, beliefs about reform-based teaching, and teaching self-efficacy than comparison group teachers. The findings indicate that what teachers learn from the combination of professional development and teaching with educative curriculum varies according to what their knowledge and beliefs are on entering the experience. Surprisingly, high entry-level self-efficacy was associated not only with lower learning gains for the teachers, but also for their students. Finally, teachers' space science learning and that of their students are implicated as mediators of the positive effect of the professional development and educative curriculum enactment on teacher beliefs about reform science teaching. This work refines and extends a theoretical framework of teachers' participatory relationship with curricula.  相似文献   

8.
This study, conducted from a constructivist perspective, examined the belief system of a prospective elementary teacher (Barbara) about science teaching and learning as she developed professional knowledge within the context of reflective science teacher education. From an analysis of interviews, observation, and written documents, I constructed a profile of Barbara's beliefs that consisted of three foundational and three dualistic beliefs. Her foundational beliefs concerned (a) the value of science and science teaching, (b) the nature of scientific concepts and goals of science instruction, and (c) control in the science classroom. Barbara held dualistic beliefs about (a) how children learn science, (b) the science students' role, and (c) the science teacher's role. Her dualistic beliefs formed two contradictory nests of beliefs. One nest, grounded in lifelong science learner experiences, reflected a didactic teaching orientation and predominantly guided her practice. The second nest, not well grounded in experience, embraced a hands‐on approach and predominantly guided her vision of practice. The findings accentuate the complexity and nestedness of teachers' belief systems and underscore the significance of identifying prospective teachers' beliefs, espoused and enacted, for designing teacher preparation programs. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 835–868, 2003  相似文献   

9.
The goal of this research is to identify science teachers' beliefs and conceptions that play an important role in shaping their understandings of and attempts to enact inclusive science teaching practices. We examined the work products, both informal (online discussions, email exchanges) and formal (papers, unit plans, peer reviews), of 14 teachers enrolled in a master's degree course focused on diversity in science teaching and learning. These emerging understandings were member-checked via a series of interviews with a subset of these teachers. Our analysis was conducted in two stages: (1) describing the difficulties the teachers identified for themselves in their attempts to teach science to a wide range of students in their classes and (2) analyzing these self-identified barriers for underlying beliefs and conceptions that serve to prohibit or allow for the teachers' understanding and enactment of equitable science instruction. The teachers' self-identified barriers were grouped into three categories: students, broader social infrastructure, and self. The more fundamental barriers identified included teacher beliefs about the ethnocentrism of the mainstream, essentialism/individualism, and beliefs about the meritocracy of schooling. The implications of these hurdles for science teacher education are discussed.  相似文献   

10.
Adapted primary literature (APL) refers to an educational genre specifically designed to enable the use of research articles for learning biology in high school. The present investigation focuses on the paedagogical content knowledge (PCK) of four high‐school biology teachers who enacted an APL‐based curriculum in biotechnology. Using a constructivist qualitative research approach, we analysed those teachers' aims and beliefs, the instructional strategies they used during the enactment of the curriculum, as well as the outcomes of the enactment as perceived by the teachers and their students, and as reflected in the class observations. Some of the teachers' strategies applied during the enactment, such as the conversational model, were specifically designed for teaching APL‐based curricula. We found that the instructional strategies applied for the adapted articles were associated with cognitive and affective engagement, active learning, inquiry thinking, and understanding of the nature of science. Suitable teacher PCK promoted learning by inquiry in addition to learning on inquiry. Students' challenges were mainly linked to the comprehension of complex, multi‐stage, biotechnological processes and methods that are abundant throughout the curriculum and required the use of previous knowledge in new contexts. A complex interaction of factors, namely teachers' PCK, the APL genre, and the biotechnology content of the curriculum, shaped the instructional strategies of the new curriculum and the outcomes of its enactment  相似文献   

11.

Responses to a written beliefs test for 178 eighth grade students and interviews with a subset of the students are analysed to investigate students' beliefs about the tentativeness of scientific knowledge and about the autonomy and strategies appropriate for science learning. These three dimensions of beliefs are salient because they align with the image of science teaching promoted by current reform movements. Analyses focus on change in beliefs and relationships among dimensions of beliefs and between those beliefs and students' understandings of science concepts. Results show that students' beliefs do not change much during the one-semester course. Students who view scientific knowledge as tentative also try to understand science. Autonomous students do not hold the most productive learning strategies, though students with low autonomy develop significantly less coherent understandings of science concepts. Instructional implications focus on potential roles of teachers and technology in promoting productive beliefs about scientific knowledge and science learning. Implications for individualized instruction follow classroom-level implications.  相似文献   

12.
An integrated mathematics and science methods course was designed to focus on the knowledge, skills, and beliefs of teacher candidates. Teacher candidates were involved in experiences that would prompt them to consider the influence of their experiences on their beliefs, the influence of their beliefs on their instructional decisions and the impact of those decisions on their effectiveness as teachers. Three teacher candidates who exhibited high levels of reflection and who made significant changes in the ways that they thought about mathematics and the teaching/learning process were chosen for study. Two themes related to this cognitive change emerged: a more complex, sophisticated understanding of the nature of mathematics; and an increased focus on children's thinking to guide instruction. Three program components having a major impact on these students' reconceptualization were reflection on past experiences, engagement in mathematical problem‐solving and opportunities to act on new beliefs.  相似文献   

13.
This review of the literature focused on three decades of research related to precollege student understandings about the nature of science. Various interpretations of what aspects characterize the nature of science were examined, revealing an agreement among scientists, science educators, and those involved in policy-making arenas that the nature of science is multifaceted and an important component of scientific literacy. A summary of the research regarding the adequacies of student conceptions about the nature of science revealed inconsistent results. Although the majority of studies show that student understandings are less than desirable, there is research that indicates that student conceptions are acceptable. Research on the impact of instructional materials and techniques on student understandings was also reviewed. The effects of language in science instruction, the content emphasis of instructional materials, integrated science curricula, and instruction in general were curricular variables found to have a negative impact on student understandings about the nature of science. Empirical evidence about the success of innovative instructional materials and techniques designed to facilitate more adequate understandings of the nature of science is needed.  相似文献   

14.
Recent arguments in science education have proposed that school science should pay more attention to teaching the nature of science and its social practices. However, unlike the content of science, for which there is well‐established consensus, there would appear to be much less unanimity within the academic community about which “ideas‐about‐science” are essential elements that should be included in the contemporary school science curriculum. Hence, this study sought to determine empirically the extent of any consensus using a three stage Delphi questionnaire with 23 participants drawn from the communities of leading and acknowledged international experts of science educators; scientists; historians, philosophers, and sociologists of science; experts engaged in work to improve the public understanding of science; and expert science teachers. The outcome of the research was a set of nine themes encapsulating key ideas about the nature of science for which there was consensus and which were considered to be an essential component of school science curriculum. Together with extensive comments provided by the participants, these data give some measure of the existing level of agreement in the community engaged in science education and science communication about the salient features of a vulgarized account of the nature of science. Although some of the themes are already a feature of existing school science curricula, many others are not. The findings of this research, therefore, challenge (a) whether the picture of science represented in the school science curriculum is sufficiently comprehensive, and (b) whether there balance in the curriculum between teaching about the content of science and the nature of science is appropriate. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 692–720, 2003  相似文献   

15.
The present study was designed to identify and characterize the major factors that influence entering science teacher candidates’ preferences for different types of instructional activities, and to analyze what these factors suggest about teacher candidates’ orientations towards science teaching. The study involved prospective teachers enrolled in the introductory science teaching course in an undergraduate science teacher preparation program. Our analysis was based on data collected using a teaching and learning beliefs questionnaire, together with structured interviews. Our results indicate that entering science teacher candidates have strong preferences for a few activity types. The most influential factors driving entering science teacher candidates’ selections were the potential of the instructional activities to motivate students, be relevant to students’ personal lives, result in transfer of skills to non‐science situations, actively involve students in goal‐directed learning, and implement curriculum that represents what students need to know. This set of influencing factors suggests that entering science teacher candidates’ orientations towards teaching are likely driven by one or more of these three central teaching goals: (1) motivating students, (2) developing science process skills, and (3) engaging students in structured science activities. These goals, and the associated beliefs about students, teaching, and learning, can be expected to favor the development or enactment of three major orientations towards teaching in this population of future science teachers: “motivating students,” “process,” and “activity‐driven.”  相似文献   

16.
Preservice teachers in a K–8 science methods course used guided video reflection to examine their interactions with children during science teaching. This inquiry approach helped preservice teachers identify and respond to gaps between their beliefs and intentions about teaching all children and their enactment of those beliefs. The experience of teaching a science lesson and then viewing it multiple times through a critical framework provided an opportunity for preservice teachers to recognize hidden assumptions, unexamined behaviors, and the unintentional meanings they may have conveyed to children. This encouraged them to think more critically about their roles as teachers in creating spaces where all children have access to quality science learning experiences.
Tamara Holmlund NelsonEmail:
  相似文献   

17.
This study investigated whether or not an increase in secondary science teacher knowledge about evolution and the nature of science gained from completing a graduate-level evolution course was associated with greater preference for the teaching of evolution in schools. Forty-four precertified secondary biology teachers participated in a 14-week intervention designed to address documented misconceptions identified by a precourse instrument. The course produced statistically significant gains in teacher knowledge of evolution and the nature of science and a significant decrease in misconceptions about evolution and natural selection. Nevertheless, teachers’ postcourse preference positions remained unchanged; the majority of science teachers still preferred that antievolutionary ideas be taught in school.  相似文献   

18.
We examined the beliefs about science teaching and learning held by elementary preservice teachers in a science methods course, comparing students who had experienced an inquiry-based physics course with those who had not. Students who had taken the physics course prior to the methods semester were better equipped to recognize and learn from inquiry and better able to apply an inquiry approach to their lesson planning. Students who were concurrently enrolled in the physics course began to revise their incoming beliefs about what it means for students to be active learners in science. The students with no experience in the inquiry-based physics course maintained their limited view that science teaching should be fun, with the teacher as teller and fun-maker.  相似文献   

19.
The purpose of this research was to examine pre-college students' understandings of the nature of science and track those beliefs over the course of an academic year. Students' conceptions of the nature of science were examined using a model of the nature of science developed for use in this study. The model has eight tenets which address both the nature of the scientific enterprise and the nature of scientific knowledge. Findings indicate participants held fully formed conceptions of the nature of science consistent with approximately one-half of the premises set out in the model. Students held more complete understandings of the nature of scientific knowledge than the nature of the scientific enterprise. Their conceptions remained mostly unchanged over the year despite their participation in the project-based, hands-on science course. Implications for teaching the nature of science are discussed.  相似文献   

20.
Epistemological beliefs refer to an individual’s thinking and beliefs about the nature of knowledge and knowing. The present study examined two research questions: (1) how do prospective elementary teachers’ epistemological beliefs in science change as a result of instruction specifically designed to improve their epistemological beliefs and (2) what role does the conceptual ecology for epistemological beliefs play in their development? The study was correlational with a sample of 161 prospective elementary teachers (148 female, 13 male). Self-report questionnaires tapping four dimensions of epistemological beliefs (certainty-simplicity, justification, source, attainability of truth) were given to prospective elementary teachers at two time points during an introductory science course. Results indicated that prospective elementary teachers became more sophisticated in their beliefs across all four dimensions of epistemological beliefs. It was found that one component of conceptual ecology for epistemological beliefs, thinking dispositions, was related to the development of epistemological beliefs. Prospective teachers with high thinking dispositions developed more sophisticated beliefs in comparison to prospective teachers with low thinking dispositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号