首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
量子光学是近30年蓬勃发展起来的前沿学科。量子光学研究光场的量子特性及量子化光场与物质的相互作用,以揭示更多更深层次的物理效应。通过量子光学实验手段,人们能以精美而简捷的方法直接显示与验证许多量子力学基本原理,在量子层次上探讨辐射场及原子的动力学行为。另一方面,某一分量噪声低于散粒噪声基准的非经典电磁场态——光场压缩态(squeezed state),应用于光学测量和光通讯系统,可以突破标准量子精确度极限,完成超微弱信息的检测与传输。  相似文献   

2.
研究了处于W类态的三纠缠原子与相干态光场相互作用过程中光场的量子特性;运用数值方法,讨论了三纠缠原子初始状态和相干态光场的强弱对系统光场压缩和二阶相干特性的影响。提出了一个基于腔QED技术的制备三原子最大W态的一般方案。通过讨论表明三个原子不论是被同时注入腔中还是在不同的时刻被注入腔中我们都能得到三原子最大W态。该方案可以在当前的技术范围内实现并且可以推广到制备n个原子的W态。  相似文献   

3.
本文针对二能级原子与单模量子化光场相互作用的Dicke模型为主要研究对象,深入讨论了多原子系统的自旋压缩动力学和光场的量子统计性质。在量子信息与量子计量学等量子调控领域有潜在的应用。目前在理论和实验上以实现多种自旋压缩态的制备方案和演示。如付诸现实将产生可观经济效益。例如量子卫星,它是一种高效的通信卫星,彻底杜绝间谍窃听及破解的保密通信技术。点评人:赵东亮,男,硕士,北京交通大学物理系,研究方向为凝聚态物理。  相似文献   

4.
20年前,人们通过物理实验方法获得了冷原子,今天超冷原子成为了多学科交叉的物理实验室,超低温物理、超低密度凝聚态物理、超低能碰撞物理、非线性与量子原子光学、量子信息处理、精密谱与量子频率标准等研究汇聚于此。文章介绍了相关研究进展、分析了院内外发展趋势并提出了发展建议。  相似文献   

5.
正在国家自然科学基金项目(项目编号:91121005,91421305等)的资助下,清华大学物理系尤力教授与郑盟锟助理教授领导的冷原子研究团队在国际上首次利用原子玻色-爱因斯坦凝聚体中的量子相变确定性地制备出对精密测量具有重要意义的量子纠缠态。有关研究成果以"Deterministic entanglement generation from driving through quantum phase transitions"(通过量子相变确定性产生量子纠缠)为题于2017年2月  相似文献   

6.
量子相干控制前沿问题及应用研究是本世纪物理学前沿领域的重要研究内容。而基于暗态的量子相干控制技术已经导致了在相干布居捕获、绝热跟随、量子信息等多方面的应用。本论文主要进行双暗态原子系统动力学行为的若干量子相干控制研究,包括:双暗态四能级原子系统的绝热跟随特性研究;双暗态作用提高克尔非线性的新方案提出;自发辐射诱导相干实现非线性极化率的提高以及双通道高效四波混频过程的实现等。  相似文献   

7.
单模Dicke模型因其能产生"超辐射相变"而著名。所谓的"超辐射相变"就是一个由正常相到超辐射相的量子相变。通常情况下,量子涨落、熵和保真度等物理量的临界行为与量子相变有重要关系。在这篇文章中,我主要讨论处于Dicke哈密顿量基态的原子模式与超辐射量子相变之间的联系。首先简要介绍量子测量的基础以及原子自旋压缩的定义。最后给出处理热力学极限下Dicke模型的解析方法,并分析了光子自作用强度D取不同值时,对自旋压缩的影响,D取值越大,自旋压缩越明显。  相似文献   

8.
依托单位:中国科学院西安光学精密机械研究所。主要研究方向与内容:以瞬态光学的理论与技术为方向,开展超短光脉冲产生、放大、压缩机理与技术研究和物质相互作用的快过程研究,开展瞬态光学技术测试设备研制及在科研生产中的推广应用。近期研究重点是:超短脉冲产生、放大、压缩、测量的新原理新技术,全固体激光技术及半导体激光和光纤激光技术;红外、紫外及X-Ray皮秒、飞秒测量技术,变象管技术,非线性技术,高速激光全息计量技术(PS,FS);光和物质相互作用快过程研究,光合作用机理,半导体材料及各种光功能材料的非线…  相似文献   

9.
近年来,量子干涉效应是现代物理学中的一个重要研究内容,现代光学技术使我们可以精确地通过原子去控制光或通过光去控制原子。比如利用相干制备,我们可以精确地操纵原子系统的光学响应特性,发生一些有趣的物理现象。例如:电磁感应光透明、无反转激光、光速减慢、光与原子纠缠等,这些新的物理效应和相干调控技术产生许多有趣且有应用价值,无论是从计算机科学、物理化学领域,它们都提供了有效研究方法,因此吸引了人们对其产生的浓厚的兴趣。通过科学家们不断努力研究发现在量子态操控中,如何保持量子态相干是最大的困难。而光和原子相互作用产生的相干和干涉现象将为量子态相干操控提供很好的思路和方法。通过科学家们不断努力研究发现在量子态操控中,如何保持量子态相干是最大的困难。而光和原子相互作用产生的相干和干涉现象将为量子态相干操控提供很好的思路和方法。  相似文献   

10.
正2021年4月25日,首届光学前沿高峰论坛暨2020年度中国光学十大进展颁奖典礼在杭州举行,量子纠缠光源、荧光成像、金属钠等离激元等10项基础研究,激光聚变、光学雷达远距离成像、光谱气体检测等10项应用研究成功入选"2020年度中国光学十大进展"。  相似文献   

11.
利用激光冷却与俘获技术获得冷原子,由双光子激发产生超冷里德堡原子,利用场电离法得到了里德堡原子ns和nd态的离子谱图;再将激光波长固定在6p3/2—34d态的共振跃迁线上,得到了离子和里德堡原子的TOF(TimeofFlight)图,并对实验结果做了分析。  相似文献   

12.
李山 《黑龙江科技信息》2014,(32):I0003-I0003
<正>[导读]奥地利因斯布鲁克大学和量子光学与量子信息研究所的科学家在冷原子系统中观测到一种特殊的巨型量子三体态——叶菲莫夫激发态(Efimov态)。科技日报柏林11月14日电(记者李山)奥地利因斯布鲁克大学和量子光学与量子信息研究所的科学家  相似文献   

13.
信息技术     
正大规模硅基集成高维光量子芯片实现北京大学"极端光学创新研究团队"王剑威、龚旗煌教授等与布里斯托尔大学物理系量子光学中心等单位合作,利用大规模集成硅基纳米光量子芯片技术,实现对高维度光量子纠缠体系的高精度和普适化量子调控和量子测量,研究论文发表于Science。实现功能强大的量子信息处理芯片是当前量子科技革命的关键。研究团队实现了一种新型的多路径加载高维量子态方式,即每个光子以量子叠加态的形式同时存在于多条光波导路径,从而实现了一个高达15×15的高维量子纠缠系统。通过可控地激发16个参量四波混频单光子源阵列,可以制备具有任意复系数的高维度量子纠缠态。  相似文献   

14.
顾永建 《科技通报》1999,15(5):367-369
在将有源RLC电路量子化的基础上,研究了压缩真空态下介观RLC电路中电荷、电流的量子起伏,所得结论比其它文献更有普遍性。  相似文献   

15.
提出一般和有效的算符方法来处理原子与腔场、腔场与腔场等相互作用系统。基于该方法,通过构造三对时间依赖的准光子产生和湮灭算符,简捷地求解二能级单原子与三腔场非共振相互作用系统,得到系统的本征态和本征值、一般态矢、演化算符及三腔场的光子数和原子布居反转的时间演化。我们的新方法可直接应用于其它一些量子系统。  相似文献   

16.
《发明与革新》2009,(1):34-34
最近从中科院上海光学精密机械研究所传来好消息,由中科院院士王育竹领导的研究小组实现了我国第一个原子芯片上的玻色-爱因斯坦凝聚体,标志着我国冷原子物理研究和量子信息存储技术研究取得标志性进展。  相似文献   

17.
《大众科技》2009,(1):4
记者从中科院上海光学精密机械研究所获悉,由中科院院士王育竹领导的研究小组,近期实现了我国第一个原子芯片上的玻色—爱因斯坦凝聚体,标志着我国冷原子物理研究和量子信息存储技术研究取得标志性进展。  相似文献   

18.
量子计算与量子信息是一个多学科的交叉研究课题,同时也是各种不同形式研究的交叉,涉及量子力学、信息学、计算机科学、密码学、数学、物理学的多个分支,如凝聚态物理、原子分子物理、光学等。清华大学物理系核物理教研室主任龙桂鲁从1998年开始进行量子计算与量子信息的研究工作,在他看来,量子计算与量子信息的研究是一个潜在的高新技术研究,如果量子计算机一旦真正运用,那会带来一个新的时代。作为量子计算和量子通信领域的探路者,多年来,龙桂鲁在这一领域开拓创新,取得了许多令世界瞩目的研究成果。他领导团队提出首个量子安全直接通信方案,开辟和引导了该研究方向;提出首个多方高维密集编码模型,发展了分布式量子通信理论;提出了分步传输和块传输方法;建立了量子搜索相位匹配理论,在科学研究中做出了突出的贡献。  相似文献   

19.
最近从中科院上海光学精密机械研究所传来好消息,由中科院院士王育竹领导的研究小组实现了我国第一个原子芯片上的玻色-爱因斯坦凝聚体,标志着我国冷原子物理研究和量子信息存储技术研究取得标志性进展.  相似文献   

20.
《科技风》2020,(12)
随着量子信息技术的不断进步,具有量子效应的单光子在信息处理、信息探测中扮演着重要角色。本文主要介绍了激光衰减,基于原子、量子点等的按需单光子制备是最常见几种获取单光子源的方法。目前,针对单光子源的研究已经取得重大进展,多个研究组成功实现了常温下工作、高效率、高不可分辨率的单光子源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号