首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
建立斜率公式模型形如(y_1-y_2)/(x_1-x_2)的分式,可把它理解成平面直角坐标系内,连接两点p_1(x_1,y_1),p_2(x_2,y_2)的直线的斜率,从而把这类问题转化为解析几何中直线的斜率问题.  相似文献   

2.
本文介绍利用直线两点式参数方程来证明比例式的一种规范化有效方法,供参考。一、直线两点式参数方程如图, 设P_1(x_1,y_1)、P(x_2,y_2)、P(x,y)都是直线l上的点,且P_1P/PP_2=λ则(x=x_1+λx_2/1+λ)/(y=y_+λy_2/1+λ)(λ为参数,λ≠-1) 即为过P_1、P_2两点的直线的参数方程。∵由(x_1-x_2)/(x-x_2)=1+λ 及  相似文献   

3.
直线y=kx+b上两点A(x_1,y_1),B(x_2,y_2)间距离  相似文献   

4.
贵刊1983年第5期刊登了《一类直线方程的四种求法》一文,该文介绍了解决如下问题的四种方法:过二次曲线C:F(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部[指包含焦点的平面区域(不包括周界)]已知点M(x_0,y_0)作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得点M平分弦AB。对于这类问题,可作如下推广:过M作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得M点为弦AB的n等分点。当n≥3时,用《一类直线方程的四种求法》一文介绍的四种方法来求  相似文献   

5.
<正>1.圆锥曲线涉及中点弦求曲线方程和直线方程的问题,经常用点差法设而不求解题例1已知椭圆E:x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=-(y_1-y_2)(y_1+y_2)/b2=-(y_1-y_2)(y_1+y_2)/b2。  相似文献   

6.
考虑到定比分点公式中λ是有向线段的比,我们可以很容易地得到一个很有用处的定理:过 P_1(x_1,y_1),P_2(x_2,y_2)两点的直线若与直线L:Ax+By+C=0相交于点P,则  相似文献   

7.
要求已知点M(a,b)关于直线Ax+By+C=0的对称点N(x_0,y_0)的坐标,可由直线Ax+By+C=0是连接两点M(a,b)与N(x_0,y_0)的线段MN的垂直平分线而推得。由线段MN的中点((a+x_0)/2,(b+y_0)/2)在直线Ax+By+C=0上,有  相似文献   

8.
我们知道,抛物线y=ax~2+bx+c是以直线x=-b/2a为对称轴的轴对称图形,它的顶点在对称轴上.由此可以讲一步得到如下结论:(1)抛物线上纵坐标相同的两点是对称点,抛物线上对称两点的纵坐标相同.(2)若抛物线上有两点(x_1,y_1),(x_2,y_1),则抛物线的对称轴为:直线x=x_1+x_2/2.解决有关抛物线的问题  相似文献   

9.
解析几何里有这样一类问题:过二次曲线 C:F(x,y)≡Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部〔指包含焦点的平面区域(不包括周界)〕已知点 M(x_0,y_0)作直线与曲线C 相交于两点 A(x_1,y_1),B(x_2,y_2),使得 M 点平分弦 AB.例.过二次曲线 C:14x~2+24xy+21y~2-4x+18y-139=0内一点 M(1,-2)作一直线,使截得的弦被 M 点平分。求此直线的方程。  相似文献   

10.
对于直线方程:x_0x/a~2+y_0y/b~2=1,文[1]中已证明:它是过平面上任一点p_0(x_0,y_0)(原点除外)的直线与椭圆的两个交点为切点的两切线的交点的轨迹方程,同时还指出了它的两个有趣的性质。本文将继续研究它的另一  相似文献   

11.
定理设二次曲线方程为F(x,y)=Ax~2+2Bxy+Cy~2+2Dx+2Ey +F=0。(1)过平面上任意一定点M(x_0,y_0)(除去曲线的中心)作动直线,与曲线(1)交于P_1、P_2两点,则弦P_1P_2的中点轨迹方程是Φ(x-x_0,y-y_0)÷F_1(x_0,y_0)(x-x_0) ÷F_2(x_0,y_0)(y-y_0)=0(2)并且曲线(1)与曲线(2)同族。其中Φ(x,y)=Ax~2+2Bxy+Cy~2 F_1(x,y)=Ax+By+D F_2(x,y)=Bx+Cy+E 证明:设过定点M(x_0,y_0)的动直线为  相似文献   

12.
我们知道,与椭圆x~2/a~2+y~2/b~2=1相切于(X_0y_0)点的切线方程是x_0x/a~2+y_0y/b~2=1 ①我们把直线y=kx+(m≠O) ②变形为 -ka~2x/m/a~2+b~2/m~y/b~2=1 ③如果直线②与椭圆也相切于(x_0,y_0)点,则①和③表示同一条直线,所以有 x_0=-ka~2/m,y_0=b~2/m (Ⅰ) 用同样的方法,可类似地求出圆x~2+y~2=r~2双曲线x~2/a~2-y~2/b~2=1和抛物线y~2=2px与  相似文献   

13.
设点P(x_0,y_0),直线l:Ax+By+C=0,求点P(x_0,y_0)到直线l:Ax+By+C=0距离公式的推导无论是原来的旧教材还是现在的新课标教材,都指出由点P(x_0,y_0)向直线l作垂线,垂足为Q,求出Q  相似文献   

14.
<正>我们知道,若点P(x_1,y_1),Q(x_2,y_2)在直线l:f(x,y)=0的两侧,则f(x_1,y_1)·f(x_2,y_2)<0,反之也成立.利用这个性质可巧妙地解决一类直线斜率的范围问题,现举例说明之.  相似文献   

15.
<正>题1(1)在平面直角坐标系xOy中,已知不同的两点A(x_1,y_1)、B(x_2,y_2).(ⅰ)求直线AB的一般式方程;(ⅱ)当点O不在直线AB上时,求△OAB的面积.(2)若A、B是椭圆C:x23/+y23/+y2=1上的两个动点,且点O不在直线AB上,求△OAB面积的最大值.解(1)(ⅰ)当x_1≠x_2且y_1≠y_2时,可得直  相似文献   

16.
解析几何中有一类韦达定理与弦长紧密联系的题型,兹举例说明. 首先,给出一个弦长公式表达式. 设直线y=kx+b与非退化圆锥曲线相交于两点A(x_1,y_1),B(x_2,y_2),则 |AB|=((x_1-x_2)~2+(y_1-y_2)~2)~(1/2)(*) 为使(*)与韦达定理紧相联,自然会注意到  相似文献   

17.
<正>在圆锥曲线的考查中,我们经常会遇到这样的一类问题:圆锥曲线上存在两点关于某条直线对称,求参数的取值范围。这类问题的解法是:设P(x_1,y_1),Q(x_2,y_2)是圆锥曲线上关于直线y=kx+b(k≠0)对称的两点,PQ的中点为M(x_0,y_0),则PQ的方程为y=-1/kx+m,利用点差法、中点坐标公式求得中点坐标,再根据中点与圆锥曲线的位置关系求解。例1已知抛物线C:y2=x与直线l:  相似文献   

18.
F(x.y)=a_(11)x~2+2a_(12)xy+a_(22)y~2+2a_(13)x+2a_(23)y+a_(33)=0 (1)设点P_0(x_0,y_0)为不在曲线(1)的焦点所在区域内的点,因而过P_0可向曲线(1)作二条切线,两个切点分别为P_1(x_1,y_1),P_2(x_2,y_2),称联P_1P_2的直线l为曲线(1)关于P_0的切点弦。本文给出l的一种简易求法。 命题:若P_0(x_0,y_0)为平面上不在曲线(1)的焦点区域内的任一点,则曲线(1)关于P_0的切点弦方程为:  相似文献   

19.
1.直线方向向量的概念 在直角坐标系内,已知两点P_1(x_1,y_1),P_2(x_2,y_2)(x_1≠x_2),那么直线P_1P_2就是确定的,这条直线的斜率也是确定的,其公式为:  相似文献   

20.
<正>直线的参数方程是由直线经过的定点和其倾斜角确定的.经过定点P_0(x_0,y_0),倾斜角为α的直线的参数方程为{x=x_0+tcosα,y=y_0+tsinα(为参数).我们不妨把直线参数方程的这种形式称之为直线参数方程的标准式.一、直线l参数方程中参数t的深层理解设直线l过定点P(x_0,y_0),P,P_1,P_2是直线l上的点,在参数方程标准式中相应参数值分別为t、t_1、t_2,则(1)P与P_0的距离为|PP_0|=|t|.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号