首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、均值不等式1.如果a,b∈R ,那么a2 b≥ab,当且仅当a=b时取等号.即若ab为定值时,当且仅当a=b时,a b有最小值2ab;若a b为定值时,当且仅当a=b时,ab有最大值a b22.2.如果a,b,c∈R ,那么a 3b c≥3abc,当且仅当a=b=c时取等号.即若abc为定值时,当且仅当a=b=c时,a b c有最小值33abc;  相似文献   

2.
利用和积不等式“(a b)/2≥(ab)~(1/2)”求最值时,我们熟知有如下定理: 定理一若两个正变数a、b之积a b=P是定值,则当a=b时,其和S=a b有最小值, S最小值=2P~(1/2)。初学者在应用本定理解题时,有一个常犯的错误:他们往往只考虑“ab=P为定值”的先决条件,而忽视“a=b”这另一个先决条件,致使造成不少有关问题的错解。  相似文献   

3.
<正>1.知识具备x2≥0→(a-b)2≥0→a2+b2-2ab≥0,即:(1)a2+b2≥2ab,注意乘积为定值,平方和有最小值,当且仅当a=b时取等号.(2)ab≤a2+b22,注意平方和为定值,乘积有最大值,当且仅当a=b时取等号.若a、b∈R+,则有:(3)a+b≥2 ab%姨,乘积为定值,和有最小值,当且仅当a=b时取等号.(4)ab≤(a+b2)2,和为定值,乘积有最大值,当且仅当a=b  相似文献   

4.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

5.
同学们都知道,运用二元均值不等式a+b/2≥(ab)~1/2(或a+b≥2(ab)~1/2)可以求出以下两种情况下的最值:①若a·b为定值P,则当a=b时,a+b有最小值2(P)~1/2;②若a+b为定值S,则当a=b时,a·b有最大值1/4S2.初学这部分内容时,不少同学常常出现这样或那样的错误.牢记下面的三条纪律,有助于提高解题的正确率.  相似文献   

6.
高二新教材(试验本)第10页例1给出: 定理1已知x、y都是正数,那么: (1)如果积xy是定值P,那么当x=y时,和x+y有最小值2√P; (2)如果和x+y是定值S,那么当x=y时,积xy有最大值1/4S2.  相似文献   

7.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

8.
如果a,b∈R,那么a^2 b^2≥2ab(当且仅当a=b时取“=”)  相似文献   

9.
高中代数下册第8页给出的均值定理:如果a,b∈R,那么a^2 b^2≥2ab(当且仅当a=b时,取“=”号).  相似文献   

10.
周攀 《高中数理化》2007,(10):18-19
解析:运用排除法,C选项|a-b|+1/a-b≥2,当a-b<0时不成立,运用公式一定要注意公式成立的条件,如果a,b∈R,那么a^2+b^2≥2ab(当且仅当a=b时取“=”号),如果a,b是正数,那么a+b/2≥√ab(当且仅当a=b时取“=”号)。[第一段]  相似文献   

11.
a>0,b>0,(a+b)/2≥2(ab)~(1/2)是一个重要的基本不等式,可以求函数的值域.在应用时,务必注意其条件:一是a,b都是正数;二是定值条件,即和为定值或积是定值;三是相等条件,即a=b时取等号.当条件不具备时,需要进行适当的转化,现举例说明.  相似文献   

12.
均值不等式为广大同学所熟悉:(1)如果a,b∈R^+,那么a+b/2≥√ab,当且仅当a=b时等号成立;  相似文献   

13.
<正>在求两个正数和的最大值、积的最小值时,常常要利用定理解题。定理1:已知x,y是正数,x+y=S,xy=P。(1)如果P是定值,那么当且仅当x=y时,S有最小值2P(1/2);(2)如果S是定值,那么当且仅当x=y时,P有最大值S(1/2);(2)如果S是定值,那么当且仅当x=y时,P有最大值S2/4。然而,当x=y不可能成立时,在一定条件下,两个非负实数的和、积仍然有最大值和最小值。  相似文献   

14.
定理1 如果a,b∈R那么a~2 b~2≥2ab(当且仅当a=b时取等号) 推论如果a,b∈R~ 那么(a b)/2≥(ab)~(1/2)(当且仅当a=b时取等号) 定理2 如果a、b、c∈R~ 那么a~3 b~3 c~3≥3abc(当且仅当a=b=c时,取等号) 推论如果a、b、c∈R~ 那么(a b c)/3≥(abc)~(1/3)(当且仅当a=b=c时,取等号) 以上两个重要不等式,在六年制高二代数上都作了在内容上彼此独立、在方法上各不相同的证明。教材对前者采用综合法证明,后者采用的是比较法。后者证明就其方法可取,但就其过程来讲倒觉得有些冗长。以上两个定理(含推论)有没有联系呢?回并是肯定的,事实上,它们之间是完全可以互相推证。 (—) 用定理1的推论证明定理2  相似文献   

15.
高级中学数学第二册 (上 )第六章一组不等式 :1 如果a ,b ∈R ,那么a2 b2 ≥2ab(当且仅当a =b时取“=”号 ) (P9性质定理 ) .2 .已知a ,b是正数 ,且a≠b .求证a3 b3>a2 b ab2 (P12 例 3) .3.如果a ,b是正数 ,且a≠b是正数求证a6 b6 >a4 b2 a2 b4 (P16 习题 2 ) .从结构上看 ,三式之间有惊人的相似 ,反映了相关数学的本质属性 .由此类比拓展 ,可以得到更一般性的结论 ,形成新的解题序列 ,发挥教材的效应 .引申 1 如果a ,b是正数 ,那么an bn≥an- 1b abn- 1(n∈N ,n >1 ) (当且仅当a=b时取“=”号 ) .证明 an bn - (an- 1b abn- 1)…  相似文献   

16.
定理 如果ab∈R,那么a^2+b^2≥2ab.(当且仅当a=b时取等号) 推论 如果ab∈R^+,那么a+b/2≥√ab.(当且仅当a=b时取等号) 上述内容在数学中称为“均值不等式定理”,是不等式中的一个重要结论.值得注意的是,在高中物理很多涉及到极值的问题中,都有令人惊奇的妙用.  相似文献   

17.
高中数学课本中有如下定理:如果a、b为正数,那么a b/2≥(ab)平方根(当且仅当a=b时取“=”号),该定理中的不等式通常被称为均值不等式。下面例谈考生在利用它求最大(小)值时,常常陷入的4个误区。  相似文献   

18.
如果a,bR,那么a2+b2≥2ab(当且仅当a=b时取“=”号).该结论利用作差法极易证明.下面给出其推论及应用.推论1如果a,b是正数,那么a+b2≥ab√(当且仅当a=b时取“=”号).这个定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.其应用极其广泛,常用于求最值、比较大小、求取值范围和证明不等式等.例1若实数a,b满足a+b=2,则3a+3b的最小值是A.18B.6C.23√D.234√解3a+3b≥23a·3b√=23a+b√=6(当且仅当a=b=1时取“=”号).即3a+3b的最小值为6.选B.推论2如果a,bR,那么a2+b2≥2|ab|(当且仅当|a|=|b|时取“=”号).证明∵a2+b2=…  相似文献   

19.
高中教材中的基本不等式(a b)/2≥ab~(1/ab)(a≥0,b≥0)是证明不等式时经常要用到的,取等号的条件是“a=b”,我们称之为“元等”。若对于a b=p(定值)当且仅当a=b=p/2(定值)时,ab~(1/ab)才取得最大值。利用这一结论,我们可以证明一类不等式:  相似文献   

20.
一、利用均值不等式求最值仅当 如果a,b〉0,则√a^2+b^2/2≥a+b/≥√2/1/a+1/b,当且 a=b时等号成立. 这组关系集中反映了两个正数的平方和、和、积、倒数和,这四种形式的量的不等关系.当其中一个量为定值,其它量伴随着产生最值;要使其中一个量有最值,只要使它左邻右舍的其它三量中有一定值即可.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号