首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three-dimensional (3D) digital anatomical models show potential to demonstrate complex anatomical relationships; however, the literature is inconsistent as to whether they are effective in improving the anatomy performance, particularly for students with low spatial visualization ability (Vz). This study investigated the educational effectiveness of a 3D stereoscopic model of the pelvis, and the relationship between learning with 3D models and Vz. It was hypothesized that participants learning with a 3D pelvis model would outperform participants learning with a two-dimensional (2D) visualization or cadaveric specimen on a spatial anatomy test, particularly when comparing those with low Vz. Participants (n = 64) were stratified into three experimental groups, who each attended a learning session with either a 3D stereoscopic model (n = 21), 2D visualization (n = 21), or cadaveric specimen (n = 22) of the pelvis. Medical and pre-medical student participants completed a multiple-choice pre-test and post-test during their respective learning session, and a long-term retention (LTR) test 2 months later. Results showed no difference in anatomy test improvement or LTR performance between the experimental groups. A simple linear regression analysis showed that within the 3D group, participants with high Vz tended to retain more than those with low Vz on the LTR test (R2 = 0.31, P = 0.01). The low Vz participants may be cognitively overloaded by the complex spatial cues from the 3D stereoscopic model. Results of this study should inform resource selection and curriculum design for health professional students, with attention to the impact of Vz on learning.  相似文献   

2.
Abstract

The authors investigated the effects of a technical drawing course, video games, gender, and type of school on the spatial ability (spatial visualization and orientation) of secondary school students in Barbados. A total of 420 students (269 boys; 151 girls) from nine government schools within Category 3 and Category 4 were sampled. A four-way between-subjects analysis of covariance revealed significant main effects for technical drawing on spatial visualization and orientation and video games on spatial orientation. Significant two- and three-way interactions occurred, but four-way interactions failed to reach significance. Implications are discussed for secondary school teachers and educational stakeholders on improving practice and context through the innovative delivery of spatial content, with consideration of biological and social factors that affect spatial abilities.  相似文献   

3.
Students’ engagement with two-dimensional (2D) representations as opposed to three-dimensional (3D) representations of anatomy such as in dissection, is significant in terms of the depth of their comprehension. This qualitative study aimed to understand how students learned anatomy using observational and drawing activities that included touch, called haptics. Five volunteer second year medical students at the University of Cape Town participated in a six-day educational intervention in which a novel “haptico-visual observation and drawing” (HVOD) method was employed. Data were collected through individual interviews as well as a focus group discussion. The HVOD method was successfully applied by all the participants, who reported an improvement of their cognitive understanding and memorization of the 3D form of the anatomical part. All the five participants described the development of a “mental picture” of the object as being central to “deep learning.” The use of the haptic senses coupled with the simultaneous act of drawing enrolled sources of information that were reported by the participants to have enabled better memorization. We postulate that the more sources of information about an object, the greater degree of complexity could be appreciated, and therefore the more clearly it could be captured and memorized. The inclusion of haptics has implications for cadaveric dissection versus non-cadaveric forms of learning. This study was limited by its sample size as well as the bias and position of the researchers, but the sample of five produced a sufficient amount of data to generate a conceptual model and hypothesis.  相似文献   

4.
The concept that multisensory observation and drawing can be effective for enhancing anatomy learning is supported by pedagogic research and theory, and theories of drawing. A haptico-visual observation and drawing (HVOD) process has been previously introduced to support understanding of the three-dimensional (3D) spatial form of anatomical structures. The HVOD process involves exploration of 3D anatomy with the combined use of touch and sight, and the simultaneous act of making graphite marks on paper which correspond to the anatomy under observation. Findings from a previous study suggest that HVOD can increase perceptual understanding of anatomy through memorization and recall of the 3D form of observed structures. Here, additional pedagogic and cognitive underpinnings are presented to further demonstrate how and why HVOD can be effective for anatomy learning. Delivery of a HVOD workshop is described as a detailed guide for instructors, and themes arising from a phenomenological study of educator experiences of the HVOD process are presented. Findings indicate that HVOD can provide an engaging approach for the spatial exploration of anatomy within a supportive social learning environment, but also requires modification for effective curricular integration. Consequently, based on the most effective research-informed, theoretical, and logistical elements of art-based approaches in anatomy learning, including the framework provided by the observe–reflect–draw–edit–repeat (ORDER) method, an optimized “ORDER Touch” observation and drawing process has been developed. This is with the aim of providing a widely accessible resource for supporting social learning and 3D spatial understanding of anatomy, in addition to improving specific anatomical knowledge.  相似文献   

5.
颜文樑是苏州美专最为重要的创始人之一,他的"实用美术"教育思想一直指导着美专的办学方向;颜文樑同时也是西方写实主义绘画的推崇者和实践者。颜文樑的教育思想和创作思想对当今美术教育仍然有着重要的借鉴意义。  相似文献   

6.
Spatial abilities have been correlated to anatomy knowledge assessment and spatial training has been found to improve spatial abilities in previous systematic reviews. The objective of this systematic review was to evaluate spatial abilities training in anatomy education. A literature search was done from inception to 3 August 2017 in Scopus® and several databases on the EBSCOhost platform. Citations were reviewed and those involving anatomy education, an intervention, and a spatial abilities test were retained and the corresponding full-text articles were reviewed for inclusion. Before and after training studies, as well as comparative training programs, relating a spatial training intervention to spatial abilities were eligible. Of the 2,405 citations obtained, 52 articles were identified and reviewed, yielding eight eligible articles. Instruction in anatomy and mental rotations training were found to improve spatial abilities. For the seven studies retained for the meta-analysis that included the effect of interventions on spatial abilities test scores, the pooled treatment effect difference was 0.49 (95% CI [0.17; 0.82]; n = 11) improvement. For the two studies that included the practice effect on spatial abilities test scores in a control group, the pooled treatment effect difference was 0.47 (95% CI [−0.03; 0.97]; n = 2) improvement. In these two studies, the impact of the intervention on spatial abilities test scores was found despite the practice effect. Evidence was found for improvement of spatial abilities in anatomy education using instruction in anatomy and mental rotations training.  相似文献   

7.
This study evaluated effect of mental rotation (MR) training on learning outcomes and explored effectiveness of teaching via three-dimensional (3D) software among medical students with diverse spatial intelligence. Data from n = 67 student volunteers were included. A preliminary test was conducted to obtain baseline level of MR competency and was utilized to assign participants to two experimental conditions, i.e., trained group (n = 25) and untrained group (n = 42). Data on the effectiveness of training were collected to measure participants’ speed and accuracy in performing various MR activities. Six weeks later, a large class format (LCF) session was conducted for all students using 3D software. The usefulness of technology-assisted learning at the LCF was evaluated via a pre- and post-test. Students’ feedback regarding MR training and use of 3D software was acquired through questionnaires. MR scores of the trainees improved from 25.9±4.6 points to 28.1±4.4 (P = 0.011) while time taken to complete the tasks reduced from 20.9±3.9 to 12.2±4.4 minutes. Males scored higher than females in all components (P = 0.016). Further, higher pre- and post-test scores were observed in trained (9.0±1.9 and 12.3±1.6) versus untrained group (7.8±1.8; 10.8±1.8). Although mixed-design analysis of variance suggested significant difference in their test scores (P < 0.001), both groups reported similar trend in improvement by means of 3D software (P = 0.54). Ninety-seven percent of students reported technology-assisted learning as an effective means of instruction and found use of 3D software superior to plastic models. Software based on 3D technologies could be adopted as an effective teaching pedagogy to support learning across students with diverse levels of mental rotation abilities.  相似文献   

8.
Currently, medical education context poses different challenges to anatomy, contributing to the introduction of new pedagogical approaches, such as computer-assisted learning (CAL). This approach provides insight into students' learning profiles and skills that enhance anatomy knowledge acquisition. To understand the influence of anatomy CAL on spatial abilities, a study was conducted. A total of 671 medical students attending Musculoskeletal (MA) and Cardiovascular Anatomy (CA) courses, were allocated to one of three groups (MA Group, CA Group, MA + CA Group). Students' pre-training and post-training spatial abilities were assessed through Mental Rotations Test (MRT), with scores ranging between 0-24. After CAL training sessions, students' spatial abilities performance improved (9.72 ± 4.79 vs. 17.05 ± 4.57, P < 0.001). Although male students in both MA Group and CA Group show better baseline spatial abilities, no sex differences were found after CAL training. The improvement in spatial abilities score between sessions (Delta MRT) was correlated with Musculoskeletal Anatomy training sessions in MA Group (r = 0.333, P < 0.001) and MA + CA Group (r = 0.342, P < 0.001), and with Cardiovascular Anatomy training sessions in CA Group (r = 0.461, P = 0.001) and MA + CA Group (r = 0.324, P = 0.001). Multiple linear regression models were used, considering the Delta MRT as dependent variable. An association of Delta MRT to the amount of CAL training and the baseline spatial abilities was observed. The results suggest that CAL training in anatomy has positive dose-dependent effect on spatial abilities.  相似文献   

9.
Polarized light imaging (PLI) is a new method which quantifies and visualizes nerve fiber direction. In this study, the educational value of PLI sections of the human brainstem were compared to histological sections stained with Luxol fast blue (LFB) using e-learning modules. Mental Rotations Test (MRT) was used to assess the spatial ability. Pre-intervention, post-intervention, and long-term (1 week) anatomical tests were provided to assess the baseline knowledge and retention. One-on-one electronic interviews after the last test were carried out to understand the students’ perceptions of the intervention. Thirty-eight medical students, (19 female and 19 males, mean age 21.5 ± SD 2.4; median age: 21.0 years) participated with a mean MRT score of 13.2 ± 5.2 points and a mean pre-intervention knowledge test score of 49.9 ± 11.8%. A significant improvement in both, post-intervention and long-term test scores occurred after learning with either PLI or LFB e-learning module on brainstem anatomy (both P < 0.001). No difference was observed between groups in post-intervention test scores and long-term test scores (P = 0.913 and P = 0.403, respectively). A higher MRT-score was significantly correlated with a higher post-intervention test score (rk = 0.321; P < 0.05, respectively), but there was not a significant association between the MRT- and the long-term scores (rk = −0.078; P = 0.509). Interviews (n = 10) revealed three major topics: Learning (brainstem) anatomy by use of e-learning modules; The “need” of technological background information when studying brainstem sections; and Mnemonics when studying brainstem anatomy. Future studies should assess the cognitive burden of cross-sectional learning methods with PLI and/or LFB sections and their effects on knowledge retention.  相似文献   

10.
The synthetic cadaver is a high-fidelity model intended to replace or supplement other anatomy learning modalities. Academic attainment and student perceptions were examined in an undergraduate human anatomy course using a combination of plastic models and synthetic cadavers to learn lower body anatomy (“Experimental group”), compared to a Historical group who used only plastic models. Grades on an upper body test, for which both groups used only plastic models, were compared to ensure that no academic differences existed between groups (P = 0.7653). Students in the Experimental group performed better on the lower body test for which they used both plastic models and synthetic cadavers (median = 73.8% (95% CI: 72.0%-75.0%) compared to the Historical group (70.1% (95% CI: 68.3%-70.7%), P < 0.0001); however, less than half of students (49%) attributed this to the synthetic cadavers. Students' perception of laboratory resources (P < 0.0001) and learning experience (P < 0.0001) both improved with the addition of synthetic cadavers compared to using only plastic models, and 60% of students in the Experimental group agreed that the synthetic cadavers would be a key reason that they would choose that institution for undergraduate studies. This investigation showed improved student grades when plastic models and synthetic cadavers were combined, in addition to improved student perceptions of the learning experience. Results of the student questionnaires also suggested that although synthetic cadavers carry a notable up-front cost, they may be a useful recruitment tool for institutions.  相似文献   

11.
Lincoln Memorial University‐DeBusk College of Osteopathic Medicine (LMU‐DCOM) offers an optional three‐week summer Anatomy Boot Camp course (ABC) to facilitate students' transition into medical school and promote retention of anatomy subject matter. The pre‐matriculation program is a supplemental instruction course that utilizes a small group learning format. Boot camp instruction is led by teaching assistants and two anatomy professors. Enrollees gain early exposure to Medical Gross Anatomy (MGA) course subject matter, which is taught in the fall semester, and learn study skills necessary to excel in medical school. No grade is assigned for the course, therefore participants can study without the fear of potentially affecting grades. This study evaluates the effectiveness of the LMU‐DCOM ABC course using data from four consecutive summers. Independent two‐sample t‐tests were used to compare ABC to non‐ABC students for the following variables: incoming grade point average (GPA) and Medical College Admission Test® (MCAT®) scores, MGA written and laboratory practical examination grades, and final MGA course grade. Additionally, a 26‐question survey was administered to 2012–2014 boot camp participants. There were no significant differences in incoming GPA and MCAT scores. However, boot campers scored significantly higher on the first two lecture and laboratory examinations (P < 0.05) for each year of the study. Thereafter scores varied less, suggesting a faster head start for boot camp participants. Mean MGA final grade was on average 3% higher for the boot camp cohort. The survey feedback supports that the ABC course assists with the academic and social transition into medical school. Anat Sci Educ 10: 215–223. © 2016 American Association of Anatomists.  相似文献   

12.
Students' motivation is a vital determinant of academic performance that is influenced by the learning environment. This study aimed to assess and analyze the motivation subscales between different cohorts (chiropractic, dental, medical) of anatomy students (n = 251) and to investigate if these subscales had an effect on the students' anatomy performance. A 31-item survey, the Motivated Strategies for Learning Questionnaire was utilized, covering items on intrinsic and extrinsic goal orientation, task value, control of learning belief, self-efficiency for learning and performance, and test anxiety. First-year dental students were significantly more anxious than chiropractic students. Second-year chiropractic students attached more value to anatomy education than second-year medical students. The outcome of this research demonstrated a significant relationship between first- and second-year chiropractic students between anatomy performance and motivation subscales controlling for gender such as self-efficacy for learning and performance was (β = 8, CI: 5.18–10.8, P < 0.001) and (β = 6.25, CI: 3.40–9.10, P < 0.001) for first year and second year, respectively. With regards to intrinsic goal orientation, it was (β = 4.02, CI: 1.19–6.86, P = 0.006) and (β = 5.38, CI: 2.32–8.44, P = 0.001) for first year and second year, respectively. For the control of learning beliefs, it was (β = 3.71, 95% CI: 0.18–7.25, P = 0.04) and (β = 3.07, CI: 0.03–6.12, P = 0.048) for first year and second year, respectively. Interventions aimed at improving these motivation subscales in students could boost their anatomy performance.  相似文献   

13.
Anatomy education forms the foundation of a successful medical education. This has necessitated the development of innovative ideas to meet up with current realities. Despite these innovative ideas, there are challenges facing anatomy education, especially in sub-Saharan Africa. Problems such as inadequate teaching experts and outdated curricula have made anatomy education in sub-Saharan Africa uninviting and disinteresting. Several interventions have been suggested, such as the procurement of teaching tools and upgrading of teaching infrastructure. However, in this age of information technology; anatomy education, especially in sub-Saharan Africa could benefit from the integration of electronic tools and resources. This article explores the electronic tools and resources such as three-dimensional printing, educational games, and short videos that are readily available for the teaching of anatomy in sub-Saharan Africa. The author concludes by discussing how these electronic tools and resources can be used to address many of the challenges facing anatomy education in sub-Saharan Africa.  相似文献   

14.
Research suggests that spatial ability may predict success in complex disciplines including anatomy, where mastery requires a firm understanding of the intricate relationships occurring along the course of veins, arteries, and nerves, as they traverse through and around bones, muscles, and organs. Debate exists on the malleability of spatial ability, and some suggest that spatial ability can be enhanced through training. It is hypothesized that spatial ability can be trained in low-performing individuals through visual guidance. To address this, training was completed through a visual guidance protocol. This protocol was based on eye-movement patterns of high-performing individuals, collected via eye-tracking as they completed an Electronic Mental Rotations Test (EMRT). The effects of guidance were evaluated using 33 individuals with low mental rotation ability, in a counterbalanced crossover design. Individuals were placed in one of two treatment groups (late or early guidance) and completed both a guided, and an unguided EMRT. A third group (no guidance/control) completed two unguided EMRTs. All groups demonstrated an increase in EMRT scores on their second test (P < 0.001); however, an interaction was observed between treatment and test iteration (P = 0.024). The effect of guidance on scores was contingent on when the guidance was applied. When guidance was applied early, scores were significantly greater than expected (P = 0.028). These findings suggest that by guiding individuals with low mental rotation ability “where” to look early in training, better search approaches may be adopted, yielding improvements in spatial reasoning scores. It is proposed that visual guidance may be applied in spatial fields, such as STEMM (science, technology, engineering, mathematics and medicine), surgery, and anatomy to improve student's interpretation of visual content. Anat Sci Educ. © 2018 American Association of Anatomists.  相似文献   

15.
面对基础教育课程改革和学校艺术教育课程改革大潮,以培养学前教育师资为主要任务的高职高专学前教育专业,应准确把握艺术教育的价值取向,探讨艺术教学的规律和要求,主动思考艺术课程的目标定位、内容结构、教学方法和考核方式,提高学前教师教育质量,走出适合国情的学前教育大专师资培养道路。  相似文献   

16.
基于“互联网+”背景下,针对传统的留学生人体解剖学教学存在的问题,应运而生了“互联网+”教育模式,即利用信息技术及互联网平台,将虚拟仿真平台、慕课等新的模式和方法应用于教学,为留学生人体解剖学教学提供了新的思路和方法,从而促进了我国现阶段医学留学生解剖学课程的教学质量的提高。  相似文献   

17.
Spatial ability has been found to be a good predictor of success in learning anatomy. However, little research has explored whether spatial ability can be improved through anatomy education and experience. This study had two aims: (1) to determine if spatial ability is a learned or inherent facet in learning anatomy and (2) to ascertain if there is any difference in spatial ability between experts and novices in anatomy. Fifty participants were identified: 10 controls, 10 novices, 10 intermediates, and 20 experts. Participants completed four computerized spatial ability tasks, a visual mental rotation task, categorical spatial judgment task, metric spatial task, and an image-scanning task. The findings revealed that experts (P = 0.007) and intermediates (P = 0.016) were better in the metric spatial task than novices in terms of making more correct spatial judgments. Experts (P = 0.033), intermediates (P = 0.003), and novices (P = 0.004) were better in the categorical spatial task than controls in terms of speed of responses. These results suggest that certain spatial cognitive abilities are especially important and characteristic of work needed in clinical anatomy, and that education and experience contribute to further development of these abilities.  相似文献   

18.
教师的教育技术能力是开展教育改革和实现教育信息化的决定因素,培养师范生的教育技术能力就是从源头上提高教师的信息素养.目前师范生教育技术能力培养中还存在很多不足,为此,引入电子绩效支持系统,设计出师范生电子绩效支持系统,为师范生教育技术能力培养方式提供一种新鲜的思路并开拓一条有效的途径.  相似文献   

19.
Teaching methodologies for the anatomy of the middle ear have not been investigated greatly due to the middle ear’s highly complex structure and hidden location inside of the temporal bone. The aim of this randomized study was to quantitatively compare the suitability of using microscope- and endoscope-based methods for teaching the anatomy of the middle ear. We hypothesize that the endoscopic approach will be more efficient compared to the microscopic approach. To answer the study questions, 33 sixth-year medical students, residents and otorhinolaryngology specialists were randomized either into the endoscopy or the microscopy group. Their anatomical knowledge was assessed using a structured anatomical knowledge test before and after each session. Each participant received tutoring on a human cadaveric specimen using one of the two methods. They then performed a hands-on dissection. After 2–4 weeks, the same educational curriculum was repeated using the other technique. The mean gains in anatomical knowledge for the specialists, residents, and medical students were +19.0%, +34.6%, and +23.4%, respectively. Multivariate analyses identified a statistically significant increase in performance for the endoscopic method compared to the microscopic technique (P < 0.001). For the recall of anatomical structures during dissection, the endoscopic method outperformed the microscopic technique independently of the randomization or the prior training level of the attendees (P < 0.001). In conclusion, the endoscopic approach to middle ear anatomy education is associated to an improved gain in knowledge as compared to the microscopic approach. The participants subjectively preferred the endoscope for educational purposes.  相似文献   

20.
Monoscopically projected three-dimensional (3D) visualization technology may have significant disadvantages for students with lower visual-spatial abilities despite its overall effectiveness in teaching anatomy. Previous research suggests that stereopsis may facilitate a better comprehension of anatomical knowledge. This study evaluated the educational effectiveness of stereoscopic augmented reality (AR) visualization and the modifying effect of visual-spatial abilities on learning. In a double-center randomized controlled trial, first- and second-year (bio)medical undergraduates studied lower limb anatomy with stereoscopic 3D AR model (n = 20), monoscopic 3D desktop model (n = 20), or two-dimensional (2D) anatomical atlas (n = 18). Visual-spatial abilities were tested with Mental Rotation Test (MRT), Paper Folding Test (PFT), and Mechanical Reasoning (MR) Test. Anatomical knowledge was assessed by the validated 30-item paper posttest. The overall posttest scores in the stereoscopic 3D AR group (47.8%) were similar to those in the monoscopic 3D desktop group (38.5%; P = 0.240) and the 2D anatomical atlas group (50.9%; P = 1.00). When stratified by visual-spatial abilities test scores, students with lower MRT scores achieved higher posttest scores in the stereoscopic 3D AR group (49.2%) as compared to the monoscopic 3D desktop group (33.4%; P = 0.015) and similar to the scores in the 2D group (46.4%; P = 0.99). Participants with higher MRT scores performed equally well in all conditions. It is instrumental to consider an aptitude–treatment interaction caused by visual-spatial abilities when designing research into 3D learning. Further research is needed to identify contributing features and the most effective way of introducing this technology into current educational programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号