首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The practice of dissection teaches students not only the foundations of anatomical knowledge but also encourages the development of professional competencies. Yet, the dissection of cadavers in the gross anatomy course can be a stress factor for medical students. There are a minor proportion of students who demonstrate strong emotional reactions in anticipation of being confronted with a cadaver. Therefore, in 2008, the authors implemented a voluntary course entitled, “Anatomical demonstrations of organ systems” (AD‐OS) in advance of the dissection course to ease this psychological burden. The question of whether attendees of AD‐OS showed less mental distress at the start of the dissection course compared with those that had not or only infrequently visited AD‐OS was addressed. AD‐OS attendees assessed their expected mental distress using a five‐point Likert scale before starting the dissection course and a second time at the end of their first day, after they had been confronted with a cadaver. AD‐OS was evaluated as excellent and the majority of students participated actively during teaching sessions. Overall, female students showed higher levels of mental distress. AD‐OS attendees assessed themselves as being less burdened by mental distress than members of the control group. Longitudinal analysis revealed that students who visited AD‐OS showed a marked decrease of their mental distress level, comparing prospective and retrospective ratings. This was significantly (P < 0.001; Z = ?6.061) different from nonattendees or those who visited AD‐OS only infrequently. AD‐OS satisfied its intended teaching goals and proved that a step‐by‐step introduction of dissection through anatomical demonstrations helped to reduce the mental distress of students. Future studies are planned to measure mental distress with objective instruments. Anat Sci Educ © 2012 American Association of Anatomists.  相似文献   

2.
Cadaveric simulations are an effective way to add clinical context to an anatomy course. In this study, unembalmed (fresh) cadavers were uniquely prepared to simulate pleural effusion to teach chest percussion and review thoracic anatomy. Thirty first‐year medical students were assigned to either an intervention (Group A) or control group (Group B). Group A received hands‐on training with the cadaveric simulations. They were instructed on how to palpate bony landmarks for identifying the diaphragm and lobes of the lungs, as well as on how to properly perform chest percussion to detect abnormal fluid in the pleural space. Students in Group B practiced on each other. Students in Group A benefited from the training in several ways. They had more confidence in their percussive technique (A = mean 4.3/5.0, B = 2.9/5.0), ability to count the ribs on an intact body (A = mean 4.0/5.0, B = 3.0/5.0), and ability to identify the lobes of the lungs on an intact body (A = mean 3.8/5.0, B = 2.3/5.0). They also demonstrated a greater ability to locate the diaphragm on an intact body (A = 100%, B = 60%) and detect abnormal pleural fluid (A = 93%, B = 53%) with greater confidence (A = mean 3.7/5.0, B = 2.5/5.0). Finally, the hands‐on training with the unembalmed cadavers created more excitement around learning in Group A compared with Group B. This study shows that simulating pleural effusion in an unembalmed cadaver is a useful way to enhance anatomy education. Anat Sci Educ 10: 160–169. © 2016 American Association of Anatomists.  相似文献   

3.
4.
After repeated requests from medical students for more cadaver dissection opportunities, a voluntary dissecting "competition" was initiated for the third year medical students in 2006. This has been held annually on five occasions since, offering up to 30 dissection stations and accommodating an average of 53 students (range 40-66) per year, representing about 20-25% of the total class. Material is standardized to distal upper or lower limb specimens, each of which is dissected by one or two students during a single weekend day. Participants are required to complete their dissection in about six hours and present an appropriately labeled display together with a 300 word abstract, emphasizing clinical relevance. Dissections are judged on presentation, accuracy of identification and labeling, and relevance to the clinical abstract, taking into account the technical difficulty of the particular dissection. Judging from successive annual uptake of places and informal feedback, this is not only a popular event allowing students to focus creatively on producing a clinically relevant dissection in a relaxed learning environment but also of educational value. An unexpected outcome has been the production of many specimens suitable as prosections for future classes. A dissecting competition may be a useful method of stimulating learning for medical students interested in undertaking further dissection but it requires appropriate staff commitment and a supply of suitable cadaver specimens.  相似文献   

5.
Human anatomy education often utilizes the essential practices of cadaver dissection and examination of prosected specimens. However, these exposures to human cadavers and confronting death can be stressful and anxiety‐inducing for students. This study aims to understand the attitudes, reactions, fears, and states of anxiety that speech therapy students experience in the dissection room. To that end, a before‐and‐after cross‐sectional analysis was conducted with speech therapy students undertaking a dissection course for the first time. An anonymous questionnaire was administered before and after the exercise to understand students' feelings and emotions. State‐Trait Anxiety Inventory questionnaires (STAI‐S and STAI‐T) were used to evaluate anxiety levels. The results of the study revealed that baseline anxiety levels measured using the STAI‐T remained stable and unchanged during the dissection room experience (P > 0.05). Levels of emotional anxiety measured using the STAI‐S decreased, from 15.3 to 11.1 points (P < 0.05). In the initial phase of the study, before any contact with the dissection room environment, 17% of students experienced anxiety, and this rate remained unchanged by end of the session (P > 0.05). A total of 63.4% of students described having thoughts about life and death. After the session, 100% of students recommended the dissection exercise, giving it a mean score of 9.1/10 points. Anatomy is an important subject for students in the health sciences, and dissection and prosection exercises frequently involve a series of uncomfortable and stressful experiences. Experiences in the dissection room may challenge some students' emotional equilibria. However, students consider the exercise to be very useful in their education and recommend it. Anat Sci Educ 10: 487–494. © 2017 American Association of Anatomists.  相似文献   

6.
7.
Teaching time dedicated to anatomy education has been reduced at many medical schools around the world, including Nova Medical School in Lisbon, Portugal. In order to minimize the effects of this reduction, the authors introduced two optional, semester‐long cadaveric dissection courses for the first two years of the medical school curriculum. These courses were named Regional Anatomy I (RAI) and Regional Anatomy II (RAII). In RAI, students focus on dissecting the thorax, abdomen, pelvis, and perineum. In RAII, the focus shifts to the head, neck, back, and upper and lower limbs. This study prospectively analyzes students' academic achievement and perceptions within the context of these two, newly‐introduced, cadaveric dissection courses. Students' satisfaction was assessed anonymously through a questionnaire that included items regarding students' perception of the usefulness of the courses for undergraduate teaching, as well as with regards to future professional activity. For each of the three academic years studied, the final score (1 to 20) in General Anatomy (GA), RAI, and RAII was on average 14.26 ± 1.89; 16.94 ± 1.02; 17.49 ± 1.01, respectively. The mean results were lower in GA than RAI or RAII (P < 0.001). Furthermore, students who undertook these courses ranked them highly with regards to consolidating their knowledge of anatomy, preparing for other undergraduate courses, and training for future clinical practice. These survey data, combined with data on participating students' academic achievement, lend strong support to the adoption of similar courses as complementary and compulsory disciplines in a modern medical curriculum. Anat Sci Educ 10: 127–136. © 2016 American Association of Anatomists.  相似文献   

8.
Cadaver dissection is a key component of anatomy education. Unfortunately, students sometimes regard the process of dissection as uninteresting or stressful. To make laboratory time more interesting and to encourage discussion and collaborative learning among medical students, specially designed tasks were assigned to students throughout dissection. Student response and the effects of the tasks on examination scores were analyzed. The subjects of this study were 154 medical students who attended the dissection laboratory in 2009. Four tasks were given to teams of seven to eight students over the course of 2 weeks of lower limb dissection. The tasks were designed such that the answers could not be obtained by referencing books or searching the Internet, but rather through careful observation of the cadavers and discussion among team members. Questionnaires were administered. The majority of students agreed that the tasks were interesting (68.0%), encouraged team discussion (76.8%), and facilitated their understanding of anatomy (72.8%). However, they did not prefer that additional tasks be assigned during the other laboratory sessions. When examination scores of those who responded positively were compared with those who responded neutrally or negatively, no statistically significant differences could be found. In conclusion, the specially designed tasks assigned to students in the cadaver dissection laboratory encouraged team discussion and collaborative learning, and thereby generated interest in laboratory work. However, knowledge acquisition was not improved.  相似文献   

9.
To improve student preparedness for anatomy laboratory dissection, the dental gross anatomy laboratory was transformed using flipped classroom pedagogy. Instead of spending class time explaining the procedures and anatomical structures for each laboratory, students were provided online materials to prepare for laboratory on their own. Eliminating in‐class preparation provided the opportunity to end each period with integrative group activities that connected laboratory and lecture material and explored clinical correlations. Materials provided for prelaboratory preparation included: custom‐made, three‐dimensional (3D) anatomy videos, abbreviated dissection instructions, key atlas figures, and dissection videos. Data from three years of the course (n = 241 students) allowed for analysis of students' preferences for these materials and detailed tracking of usage of 3D anatomy videos. Students reported spending an average of 27:22 (±17:56) minutes preparing for laboratory, similar to the 30 minutes previously allocated for in‐class dissection preparation. The 3D anatomy videos and key atlas figures were rated the most helpful resources. Scores on laboratory examinations were compared for the three years before the curriculum change (2011–2013; n = 242) and three years after (2014–2016; n = 241). There was no change in average grades on the first and second laboratory examinations. However, on the final semi‐cumulative laboratory examination, scores were significantly higher in the post‐flip classes (P = 0.04). These results demonstrate an effective model for applying flipped classroom pedagogy to the gross anatomy laboratory and illustrate a meaningful role for 3D anatomy visualizations in a dissection‐based course. Anat Sci Educ 11: 385–396. © 2017 American Association of Anatomists.  相似文献   

10.
Medical schools in the United States continue to undergo curricular change, reorganization, and reformation as more schools transition to an integrated curriculum. Anatomy educators must find novel approaches to teach in a way that will bridge multiple disciplines. The cadaveric extraction of the central nervous system (CNS) provides an opportunity to bridge gross anatomy, neuroanatomy, and clinical neurology. In this dissection, the brain, brainstem, spinal cord, cauda equina, optic nerve/tract, and eyes are removed in one piece so that the entire CNS and its gateway to the periphery through the spinal roots can be appreciated. However, this dissection is rarely, if ever, performed likely due to time constraints, perceived difficulty, and lack of instructions. The goals of this project were (i) to provide a comprehensive, step‐by‐step guide for an en bloc CNS extraction and (ii) to determine effective strategies to implement this dissection/prosection within modern curricula. Optimal dissection methods were determined after comparison of various approaches/tools, which reduced dissection time from approximately 10 to 4 hours. The CNS prosections were piloted in small group sessions with two types of learners in two different settings: graduate students studied wet CNS prosections within the dissection laboratory and medical students used plastinated CNS prosections to review clinical neuroanatomy and solve lesion localization cases during their neurology clerkship. In both cases, the CNS was highly rated as a teaching tool and 98% recommended it for future students. Notably, 90% of medical students surveyed suggested that the CNS prosection be introduced prior to clinical rotations. Anat Sci Educ 11: 185–195. © 2017 American Association of Anatomists.  相似文献   

11.
Pathology and anatomy are both sciences that contribute to the foundations of a successful medical career. In the past decade, medical education has undergone profound changes with the development of a core curriculum combined with student selected components. There has been a shift from discipline‐based teaching towards problem‐based learning. Both anatomy and pathology are perceived to have suffered from this educational shift. The challenge is to introduce methods of learning for these subjects into an integrated student‐centered curriculum. The purpose of this study was to determine the prevalence of pathology in 12 donor cadavers in the dissecting room of the Bute Medical School, University of St Andrews. All of the cadavers had multiple pathologies (between three to four conditions) ranging from common to rare disorders. A number of prostheses and surgical interventions were also noted. This small study confirms that cadaveric dissection provides an excellent opportunity for the integration of anatomy, pathology, and clinical medicine into the early clinical training of undergraduate medical students. The identification of disease in a cadaver provides an excellent introduction to the gross features of a disease process, but does not substitute for the detailed study of a process later in the curriculum. Anat Sci Educ 3: 97–100, 2010. © 2010 American Association of Anatomists.  相似文献   

12.
For centuries cadaveric dissection has been a cornerstone of medical anatomy education. However, time and financial limitations in modern, compressed medical curricula, coupled with the abundance of alternate modalities, have raised questions about the role of dissection. This study was designed to explore student perceptions of the efficacy of a dissection program for learning musculoskeletal anatomy, and possible adaptations for appropriate inclusion of dissection in the modern medical curricula. A paper-based questionnaire was used to collect data from 174 medical students after completion of cadaveric dissections. Data were analyzed using both quantitative and qualitative methods. Students strongly believed that cadaver-based learning is essential to anatomy education and modern teaching modalities only complement this. Moreover, most students reported that dissection provided an additional, immersive learning experience that facilitated active learning and helped in developing manual competencies. Students with previous dissection experience or an interest in anatomy-related specialties were significantly more likely to attend dissection sessions. Students found that the procedural dissection components enhanced the knowledge of applied anatomy and is beneficial for the development of clinical skills. They welcomed the idea of implementing more procedure-based dissections alongside lectures and prosections-based practical (PBP) sessions. Cadaveric dissection plays an integral role in medical anatomy education. Time restraints and an increased focus on clinical significance, however, demand carefully considered adaptations of existing dissection protocols. The introduction of procedure-based dissection offers an innovative, highly engaging and clinically relevant package that would amalgamate skills essential to medical practice while retaining the benefits that have allowed dissection to stand the test of time.  相似文献   

13.
The knee is one of the most frequently injured joints of the human body with injuries affecting the general population and the athletic population of many age groups. Dissection procedures for the knee joint typically do not allow unobstructed visualization of the anterior cruciate or posterior cruciate ligaments without sacrificing the collateral ligaments. In many cases, the relationships of the intraarticular structures are lost as dissection systematically removes superficial structures to gain access to deeper structures. The authors present an alternative technique for dissection of the human knee joint that allows maximal visualization of intraarticular structures such as the cruciate ligaments and menisci with minimal disturbance to the tibial and fibular collateral ligaments, thus preserving the relationships of the ligamentous and intraarticular structures. Anat Sci Ed 2:41–46, 2009. © 2009 American Association of Anatomists.  相似文献   

14.
Anatomy teaching methods have evolved as the medical undergraduate curriculum has modernized. Traditional teaching methods of dissection, prosection, tutorials and lectures are now supplemented by anatomical models and e‐learning. Despite these changes, the preferences of medical students and anatomy faculty towards both traditional and contemporary teaching methods and tools are largely unknown. This study quantified medical student and anatomy faculty opinion on various aspects of anatomical teaching at the Department of Anatomy, University of Bristol, UK. A questionnaire was used to explore the perceived effectiveness of different anatomical teaching methods and tools among anatomy faculty (AF) and medical students in year one (Y1) and year two (Y2). A total of 370 preclinical medical students entered the study (76% response rate). Responses were quantified and intergroup comparisons were made. All students and AF were strongly in favor of access to cadaveric specimens and supported traditional methods of small‐group teaching with medically qualified demonstrators. Other teaching methods, including e‐learning, anatomical models and surgical videos, were considered useful educational tools. In several areas there was disharmony between the opinions of AF and medical students. This study emphasizes the importance of collecting student preferences to optimize teaching methods used in the undergraduate anatomy curriculum. Anat Sci Educ 7: 262–272. © 2013 American Association of Anatomists.  相似文献   

15.
The psychosocial impact of human dissection on the lives of medical and health science students has been noted. To assess the impact of the dissection room experience on one's willingness to become a whole body and organ donor, the attitudes of 1,350 students and professionals from the medical, health, and non‐health related disciplines to body and organ donation were studied. The participants were broken into categories according to degree of exposure to human dissection. Participants who were never exposed to the dissection experience showed more willingness to donate their bodies than those who were exposed. With the exception of the physiotherapy department, the students and professionals from the health science departments who were exposed to the dissection room but never engaged in dissection showed the most unwillingness to donate their bodies (P < 0.001). An unwillingness to donate oneself was noted as one of the negative impacts associated with exposure to the dissection room. Willingness to donate an organ correlated positively with the level of exposure to the dissection room (P < 0.001). Most of the reasons for unwillingness were traceable to negative perceptions of the dissection room as a result of poor and disrespectful management of the human cadavers. Anat Sci Educ. 7: 56–63. © 2013 American Association of Anatomists.  相似文献   

16.
The most effective method to teach gross anatomy is largely unknown. This study examined two teaching methods utilized in a physical therapy and occupational therapy gross anatomy course, (1) alternating dissection with peer teaching every other laboratory session and (2) faculty demonstrations during laboratory sessions. Student (n = 57) subgroup (A or B) academic performance was determined using written, laboratory practical, and palpation practical examinations. Subgroup A performed significantly better on laboratory practical examination questions pertaining to dissected, in comparison to peer-taught structures (67.1% vs. 60.2%, P = 0.008). Subgroup B performed significantly better on laboratory practical examination questions pertaining to peer-taught, in comparison to dissected structures (64.1% vs. 57.9%, = 0.001). When Subgroup A was compared to Subgroup B, there were no statistically significant differences on laboratory practical examination question types, whether the subgroup learned the structure through dissection or peer teaching. Based on within and between subgroup comparisons, faculty demonstrations had no effect on written, laboratory practical, or palpation practical examination scores. Although limited, data suggest that the student roles when alternating dissection with peer teaching every other laboratory session appear to be equally effective for learning gross anatomy. The benefits of this method include decreased student/faculty ratio in laboratory sessions and increased time for independent study. Faculty demonstrations during laboratory sessions do not seem to improve student academic performance.  相似文献   

17.
Cadaver dissection is the first opportunity for many students to practice handling human tissue and is their first exposure to the occupational hazards involved with this task. Few studies examine dissection room injuries to ascertain the dangers associated with dissecting. We performed a retrospective cohort analysis of dissection room injuries from four student cohorts over an eleven‐year period (2001–2011), including second‐year medical students, third‐year medical students, second‐year dental students, and third‐year science students. Injury data included activity causing injury, object responsible, and injury site. A total of 163 injuries during 70,039 hours of dissection were recorded, with 66 in third‐year medical students, 42 in second‐year medical students, 36 in third‐year science students, and 16 in second‐year dental students. The overall rate was 2.87 injuries per 1,000 dissection hours, with second‐year medical students most frequently injured (5.5 injuries per 1,000 hours); third‐year medical students were least frequently injured (1.3 injuries per 1,000 hours). A significant difference in injury rates between student groups indicated a higher than expected injury rate to second‐year medical students and lower than expected rates to third‐year medical students. Injury rates increased for most groups between 2001–2006 and 2007–2011 periods. Most injuries (79%) were from scalpel cuts to the finger or thumb. This study provides injury rates for dissection room injuries to students, indicating differences in injury frequency between cohorts and an increase in injury rate over time. As scalpel cuts were the most likely injury mechanism, targeting scalpel handling with preventative strategies may reduce future injury risk. Anat Sci Educ 6: 404–409. © 2013 American Association of Anatomists.  相似文献   

18.
Visual-spatial abilities are considered a successful predictor in anatomy learning. Previous research suggest that visual-spatial abilities can be trained, and the magnitude of improvement can be affected by initial levels of spatial skills. This case-control study aimed to evaluate (1) the impact of an extra-curricular anatomy dissection course on visual-spatial abilities of medical undergraduates and (2) the magnitude of improvement in students with initially lower levels of visual-spatial abilities, and (3) whether the choice for the course was related to visual-spatial abilities. Course participants (n = 45) and controls (n = 65) were first and second-year medical undergraduates who performed a Mental Rotations Test (MRT) before and 10 weeks after the course. At baseline, there was no significant difference in MRT scores between course participants and controls. At the end of the course, participants achieved a greater improvement than controls (first-year: ∆6.0 ± 4.1 vs. ∆4.9 ± 3.2; ANCOVA, P = 0.019, Cohen's d = 0.41; second-year: ∆6.5 ± 3.3 vs. ∆6.1 ± 4.0; P = 0.03, Cohen's d = 0.11). Individuals with initially lower scores on the MRT pretest showed the largest improvement (∆8.4 ± 2.3 vs. ∆6.8 ± 2.8; P = 0.011, Cohen's d = 0.61). In summary, (1) an anatomy dissection course improved visual-spatial abilities of medical undergraduates; (2) a substantial improvement was observed in individuals with initially lower scores on the visual-spatial abilities test indicating a different trajectory of improvement; (3) students' preferences for attending extracurricular anatomy dissection course was not driven by visual-spatial abilities.  相似文献   

19.
Health education, research, and training rely on the altruistic act of body donation for the supply of cadavers. Organ transplantation and research rely on donated organs. Supply of both is limited, with further restrictions in Australia due to requirements for a next-of-kin agreement to donation, irrespective of the deceased's pre-death consent. Research suggests health workers are less likely to support the donation of their own bodies and/or organs, despite recognizing the public good of donation, and that exposure to gross anatomy teaching may negatively affect support for donation. Attitudes to body and organ donation were examined in Australian students studying anatomy. Support for self-body donation (26.5%) was much lower than support for self-organ donation (82.5%). Ten percent of participants would not support the election of a family member or member of the public to donate their body, and just over 4% would not support the election of a family member to donate their organs, with one-to-two percent not supporting this election by a member of the public. Exposure to gross anatomy teaching was associated with an increased likelihood of consideration of issues about body and organ donation, whether for self, family, or the public, and registration as an organ donor. Exposure decreased participants' willingness to donate their own body, with those who practiced a religion least likely to support body donation. Gross anatomy courses provide an opportunity to inform future healthcare workers about altruistic donation, albeit with a recognition that religious or cultural beliefs may affect willingness to donate.  相似文献   

20.
The teaching of gross anatomy has, for centuries, relied on the dissection of human cadavers, and this formative experience is known to evoke strong emotional responses. The authors hypothesized that the phenomenon of cadaver naming is a coping mechanism used by medical students and that it correlates with other attitudes about dissection and body donation. The authors developed a 33‐question electronic survey to which 1,156 medical students at 12 medical schools in the United States voluntarily responded (November 2011–March 2012). They also surveyed course directors from each institution regarding their curricula and their observations of students' coping mechanisms. The majority of students (574, 67.8%) named their cadaver. Students most commonly cited the cadaver's age as the reason they chose a particular name for the cadaver. A minority of the students who did not name the cadaver reported finding the practice of naming disrespectful. Almost all students indicated that they would have liked to know more about their donor, particularly his or her medical history. Finally, students who knew the birth name of the donor used it less frequently than predicted. The authors found that the practice of naming cadavers is extremely prevalent among medical students and that inventive naming serves as a beneficial coping mechanism. The authors suggest that developing a method of providing students with more information about their cadaver while protecting the anonymity of the donor and family would be useful. Anat Sci Educ 7: 169–180. © 2013 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号