首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel three-dimensional tool for teaching human neuroanatomy   总被引:1,自引:0,他引:1  
Three‐dimensional (3D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross‐sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented and evaluated a new tool for teaching 3D neuroanatomy to first‐year medical students at Boston University School of Medicine. Students were randomized into experimental and control classrooms. All students were taught neuroanatomy according to traditional 2D methods. Then, during laboratory review, the experimental group constructed 3D color‐coded physical models of the periventricular structures, while the control group re‐examined 2D brain cross‐sections. At the end of the course, 2D and 3D spatial relationships of the brain and preferred learning styles were assessed in both groups. The overall quiz scores for the experimental group were significantly higher than the control group (t(85) = 2.02, P < 0.05). However, when the questions were divided into those requiring either 2D or 3D visualization, only the scores for the 3D questions were significantly higher in the experimental group (F1,85= 5.48, P = 0.02). When surveyed, 84% of students recommended repeating the 3D activity for future laboratories, and this preference was equally distributed across preferred learning styles (χ2 = 0.14, n.s.). Our results suggest that our 3D physical modeling activity is an effective method for teaching spatial relationships of brain anatomy and will better prepare students for visualization of 3D neuroanatomy, a skill essential for higher education in neuroscience, neurology, and neurosurgery. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

2.
This study was designed to determine whether an interactive three-dimensional presentation depicting liver and biliary anatomy is more effective for teaching medical students than a traditional textbook format presentation of the same material. Forty-six medical students volunteered for participation in this study. Baseline demographic information, spatial ability, and knowledge of relevant anatomy were measured. Participants were randomized into two groups and presented with a computer-based interactive learning module comprised of animations and still images to highlight various anatomical structures (3D group), or a computer-based text document containing the same images and text without animation or interactive features (2D group). Following each teaching module, students completed a satisfaction survey and nine-item anatomic knowledge post-test. The 3D group scored higher on the post-test than the 2D group, with a mean score of 74% and 64%, respectively; however, when baseline differences in pretest scores were accounted for, this difference was not statistically significant (P = 0.33). Spatial ability did not statistically significantly correlate with post-test scores for the 3D group or the 2D group. In the post-test satisfaction survey the 3D group expressed a statistically significantly higher overall satisfaction rating compared to students in the 2D control group (4.5 versus 3.7 out of 5, P = 0.02). While the interactive 3D multimedia module received higher satisfaction ratings from students, it neither enhanced nor inhibited learning of complex hepatobiliary anatomy compared to an informationally equivalent traditional textbook style approach. .  相似文献   

3.
Increasing number of medical students and limited availability of cadavers have led to a reduction in anatomy teaching through human cadaveric dissection. These changes triggered the emergence of innovative teaching and learning strategies in order to maximize students learning of anatomy. An alternative approach to traditional dissection was presented in an effort to improve content delivery and student satisfaction. The objective of this study is to acquire three-dimensional (3D) anatomical data using structured-light surface scanning to create a dynamic four-dimensional (4D) dissection tool of four regions: neck, male inguinal and femoral areas, female perineum, and brachial plexus. At each dissection step, identified anatomical structures were scanned using a 3D surface scanner (Artec Spider™). Resulting 3D color meshes were overlaid to create a 4D (3D+time) environment. An educational interface was created for neck dissection. Its implementation in the visualization platform allowed 4D virtual dissection by navigating from surface to deep layers and vice versa. A group of 28 second-year medical students and 17 first-year surgery residents completed a satisfaction survey. A majority of medical students (96.4%) and 100% of surgery residents said that they would recommend this tool to their colleagues. According to surgery residents, the main elements of this virtual tool were the realistic high-quality of 3D acquisitions and possibility to focus on each anatomical structure. As for medical students, major elements were the interactivity and entertainment aspect, precision, and accuracy of anatomical structures. This approach proves that innovative solutions to anatomy education can be found to help to maintain critical content and student satisfaction in anatomy curriculum.  相似文献   

4.
In the context of gross anatomy education, novel augmented reality (AR) systems have the potential to serve as complementary pedagogical tools and facilitate interactive, student-centered learning. However, there is a lack of AR systems that enable multiple students to engage in collaborative, team-based learning environments. This article presents the results of a pilot study in which first-year medical students (n = 16) had the opportunity to work with such a collaborative AR system during a full-day gross anatomy seminar. Student performance in an anatomy knowledge test, conducted after an extensive group learning session, increased significantly compared to a pre-test in both the experimental group working with the collaborative AR system (P < 0.01) and in the control group working with traditional anatomy atlases and three-dimensional (3D) models (P < 0.01). However, no significant differences were found between the test results of both groups. While the experienced mental effort during the collaborative learning session was considered rather high (5.13 ± 2.45 on a seven-point Likert scale), both qualitative and quantitative feedback during a survey as well as the results of a System Usability Scale (SUS) questionnaire (80.00 ± 13.90) outlined the potential of the collaborative AR system for increasing students' 3D understanding of topographic anatomy and its advantages over comparable AR systems for single-user experiences. Overall, these outcomes show that collaborative AR systems such as the one evaluated within this work stimulate interactive, student-centered learning in teams and have the potential to become an integral part of a modern, multi-modal anatomy curriculum.  相似文献   

5.
6.
Monoscopically projected three-dimensional (3D) visualization technology may have significant disadvantages for students with lower visual-spatial abilities despite its overall effectiveness in teaching anatomy. Previous research suggests that stereopsis may facilitate a better comprehension of anatomical knowledge. This study evaluated the educational effectiveness of stereoscopic augmented reality (AR) visualization and the modifying effect of visual-spatial abilities on learning. In a double-center randomized controlled trial, first- and second-year (bio)medical undergraduates studied lower limb anatomy with stereoscopic 3D AR model (n = 20), monoscopic 3D desktop model (n = 20), or two-dimensional (2D) anatomical atlas (n = 18). Visual-spatial abilities were tested with Mental Rotation Test (MRT), Paper Folding Test (PFT), and Mechanical Reasoning (MR) Test. Anatomical knowledge was assessed by the validated 30-item paper posttest. The overall posttest scores in the stereoscopic 3D AR group (47.8%) were similar to those in the monoscopic 3D desktop group (38.5%; P = 0.240) and the 2D anatomical atlas group (50.9%; P = 1.00). When stratified by visual-spatial abilities test scores, students with lower MRT scores achieved higher posttest scores in the stereoscopic 3D AR group (49.2%) as compared to the monoscopic 3D desktop group (33.4%; P = 0.015) and similar to the scores in the 2D group (46.4%; P = 0.99). Participants with higher MRT scores performed equally well in all conditions. It is instrumental to consider an aptitude–treatment interaction caused by visual-spatial abilities when designing research into 3D learning. Further research is needed to identify contributing features and the most effective way of introducing this technology into current educational programs.  相似文献   

7.
Anatomy education often consists of a combination of lectures and laboratory sessions, the latter frequently including surface anatomy. Studying surface anatomy enables students to elaborate on their knowledge of the cadaver's static anatomy by enabling the visualization of structures, especially those of the musculoskeletal system, move and function in a living human being. A recent development in teaching methods for surface anatomy is body painting, which several studies suggest increases both student motivation and knowledge acquisition. This article focuses on a teaching approach and is a translational contribution to existing literature. In line with best evidence medical education, the aim of this article is twofold: to briefly inform teachers about constructivist learning theory and elaborate on the principles of constructive, collaborative, contextual, and self‐directed learning; and to provide teachers with an example of how to implement these learning principles to change the approach to teaching surface anatomy. Student evaluations of this new approach demonstrate that the application of these learning principles leads to higher student satisfaction. However, research suggests that even better results could be achieved by further adjustments in the application of contextual and self‐directed learning principles. Successful implementation and guidance of peer physical examination is crucial for the described approach, but research shows that other options, like using life models, seem to work equally well. Future research on surface anatomy should focus on increasing the students' ability to apply anatomical knowledge and defining the setting in which certain teaching methods and approaches have a positive effect. Anat Sci Educ 6: 114–124. © 2012 American Association of Anatomists.  相似文献   

8.
Three‐dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer‐based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. Anat Sci Educ 6: 216–224. © 2013 American Association of Anatomists.  相似文献   

9.
Teaching internal structures obscured from direct view is a major challenge of anatomy education. High-fidelity interactive three-dimensional (3D) micro-computed tomography (CT) models with virtual dissection present a possible solution. However, their utility for teaching complex internal structures of the human body is unclear. The purpose of this study was to investigate the use of a realistic 3D micro-CT interactive visualization computer model to teach paranasal sinus anatomy in a laboratory setting during pre-clinical medical training. Year 1 (n = 79) and Year 2 (n = 59) medical students undertook self-directed activities focused on paranasal sinus anatomy in one of two laboratories (traditional laboratory and 3D model). All participants completed pre and posttests before and after the laboratory session. Results of regression analyses predicting post-laboratory knowledge indicate that, when students were inexperienced with the 3D computer technology, use of the model was detrimental to learning for students with greater prior knowledge of the relevant anatomy (P < 0.05). For participants experienced with the 3D computer technology, however, the use of the model was detrimental for students with less prior knowledge of the relevant anatomy (P < 0.001). These results emphasize that several factors need to be considered in the design and effective implementation of such models in the classroom. Under the right conditions, the 3D model is equal to traditional laboratory resources when used as a learning tool. This paper discusses the importance of preparatory training for students and the technical consideration necessary to successfully integrate such models into medical anatomical curricula.  相似文献   

10.
Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more precisely than classical cross-sectional images based on a two dimensional (2D) approach. Eighty participants were assigned to each experimental condition: 2D cross-sectional visualization vs. 3D volumetric visualization. Both groups were matched for age, gender, visual-spatial ability, and previous knowledge of neuroanatomy. Accuracy in identifying brain structures, execution time, and level of confidence in the response were taken as outcome measures. Moreover, interactive effects between the experimental conditions (2D vs. 3D) and factors such as level of competence (novice vs. expert), image modality (morphological and functional), and difficulty of the structures were analyzed. The percentage of correct answers (hit rate) and level of confidence in responses were significantly higher in the 3D visualization condition than in the 2D. In addition, the response time was significantly lower for the 3D visualization condition in comparison with the 2D. The interaction between the experimental condition (2D vs. 3D) and difficulty was significant, and the 3D condition facilitated the location of difficult images more than the 2D condition. 3D volumetric visualization helps to identify brain structures such as the hippocampus and amygdala, more accurately and rapidly than conventional 2D visualization. This paper discusses the implications of these results with regards to the learning process involved in neuroimaging interpretation.  相似文献   

11.
Understanding orbital anatomy is important for optometry students, but the learning resources available are often fragile, expensive, and accessible only during scheduled classes. Drawing on a constructivist, personalized approach to learning, this study investigated students’ perceptions of an alternative learning resource: a three-dimensional (3D) printed model used in an active learning task. A human skull was three-dimensionally scanned and used to produce a 3D printed model for each student. Students actively participated in model creation by tracing suture lines and coloring individual orbital bones during a practical class, then keeping the model for future study. Students’ perceptions of the 3D orbital model were examined through a questionnaire: the impact the model had on their learning; perceptions of the 3D orbit compared to traditional resources; and utility of having their own personalized model. The 3D orbit was well received by the student cohort. Participants (n = 69) preferred the 3D orbit as a resource for learning orbital bone anatomy compared to traditional learning resources, believing the model helped them to understand and visualize the spatial relationships of the bones, and that it increased their confidence to apply this knowledge. Overall, the participants liked that they co-created the model, could touch and feel it, and that they had access to it whenever they liked. Three-dimensional printing technology has the potential to enable the creation of effective learning resources that are robust, low-cost and readily accessible to students, and should be considered by anyone wishing to incorporate personalized resources to their multimodal teaching repertoire.  相似文献   

12.
The head and neck region is one of the most complex areas featured in the medical gross anatomy curriculum. The effectiveness of using three‐dimensional (3D) models to teach anatomy is a topic of much discussion in medical education research. However, the use of 3D stereoscopic models of the head and neck circulation in anatomy education has not been previously studied in detail. This study investigated whether 3D stereoscopic models created from computed tomographic angiography (CTA) data were efficacious teaching tools for the head and neck vascular anatomy. The test subjects were first year medical students at the University of Mississippi Medical Center. The assessment tools included: anatomy knowledge tests (prelearning session knowledge test and postlearning session knowledge test), mental rotation tests (spatial ability; presession MRT and postsession MRT), and a satisfaction survey. Results were analyzed using a Wilcoxon rank‐sum test and linear regression analysis. A total of 39 first year medical students participated in the study. The results indicated that all students who were exposed to the stereoscopic 3D vascular models in 3D learning sessions increased their ability to correctly identify the head and neck vascular anatomy. Most importantly, for students with low‐spatial ability, 3D learning sessions improved postsession knowledge scores to a level comparable to that demonstrated by students with high‐spatial ability indicating that the use of 3D stereoscopic models may be particularly valuable to these students with low‐spatial ability. Anat Sci Educ 10: 34–45. © 2016 American Association of Anatomists.  相似文献   

13.
Rapid changes in medical knowledge are forcing continuous adaptation of the basic science courses in medical schools. This article discusses a three‐year experience developing a new Computed Tomography (CT)‐based anatomy curriculum at the Sackler School of Medicine, Tel Aviv University, including describing the motivations and reasoning for the new curriculum, the CT‐based learning system itself, practical examples of visual dissections, and student assessments of the new curriculum. At the heart of this new curriculum is the emphasis on studying anatomy by navigating inside the bodies of various living individuals utilizing a CT viewer. To assess the students’ experience with the new CT‐based learning method, an anonymous questionnaire was administered at the end of the course for three consecutive academic years: 2008/2009, 2009/2010, 2010/2011. Based upon the results, modifications were made to the curriculum in the summers of 2009 and 2010. Results showed that: (1) during these three years the number of students extensively using the CT system quadrupled (from 11% to 46%); (2) students' satisfaction from radiologists involvement increased by 150%; and (3) student appreciation of the CT‐based learning method significantly increased (from 13% to 68%). It was concluded that discouraging results (mainly negative feedback from students) during the first years and a priori opposition from the teaching staff should not weaken efforts to develop new teaching methods in the field of anatomy. Incorporating a new curriculum requires time and patience. Student and staff satisfaction, along with utilization of the new system, will increase with the improvement of impeding factors. Anat Sci Educ 6: 332–341. © 2013 American Association of Anatomists.  相似文献   

14.
Early exposure to radiological cross-section images during introductory anatomy and dissection courses increases students’ understanding of both anatomy and radiology. Novel technologies such as augmented reality (AR) offer unique advantages for an interactive and hands-on integration with the student at the center of the learning experience. In this article, the benefits of a previously proposed AR Magic Mirror system are compared to the Anatomage, a virtual dissection table as a system for combined anatomy and radiology teaching during a two-semester gross anatomy course with 749 first-year medical students, as well as a follow-up elective course with 72 students. During the former, students worked with both systems in dedicated tutorial sessions which accompanied the anatomy lectures and provided survey-based feedback. In the elective course, participants were assigned to three groups and underwent a self-directed learning session using either Anatomage, Magic Mirror, or traditional radiology atlases. A pre- and posttest design with multiple choice questions revealed significant improvements in test scores between the two tests for both the Magic Mirror and the group using radiology atlases, while no significant differences in test scores were recorded for the Anatomage group. Furthermore, especially students with low mental rotation test (MRT) scores benefited from the Magic Mirror and Anatomage and achieved significantly higher posttest scores compared to students with a low MRT score in the theory group. Overall, the results provide supporting evidence that the Magic Mirror system achieves comparable results in terms of learning outcome to established anatomy learning tools such as Anatomage and radiology atlases.  相似文献   

15.
Students learn and process information in many different ways. Learning styles are useful as they allow instructors to learn more about students, as well as aid in the development and application of useful teaching approaches and techniques. At the undergraduate level there is a noticeable lack of research on learning style preferences of students enrolled in gross anatomy courses. The Index of Learning Styles (ILS) questionnaire was administered to students enrolled in a large enrollment undergraduate gross anatomy course with laboratory to determine their preferred learning styles. The predominant preferred learning styles of the students (n = 505) enrolled in the gross anatomy course were active (54.9%), sensing (85.1%), visual (81.2%), and sequential (74.4%). Preferred learning styles profiles of particular majors enrolled in the course were also constructed; analyses showed minor variation in the active/reflective dimension. An understanding of students' preferred learning styles can guide course design but it should not be implemented in isolation. It can be strengthened (or weakened) by concurrent use of other tools (e.g., flipped classroom course design). Based on the preferred learning styles of the majority of undergraduate students in this particular gross anatomy course, course activities can be hands on (i.e., active), grounded in concrete information (i.e., sensing), utilize visual representation such as images, figures, models, etc. (i.e., visual), and move in small incremental steps that build on each topic (i.e., sequential). Anat Sci Educ 11: 358–365. © 2017 American Association of Anatomists.  相似文献   

16.
This study seeks to explore whether a combination of traditional teaching methods with project-based learning (PBL) activities can improve the student learning experience in an engineering course of soil mechanics. As an alternative to the traditional type of assignment that consisted of several textbook problems, a project-based assignment was introduced in 2015 so that students could work on real-world geotechnical problems throughout the whole semester. Students were permitted to choose whether they would undertake the project-based assignment or the traditional one, thus forming the ‘project’ and ‘non-project’ groups, respectively. The academic performance of these two groups was compared on the basis of student marks while the student experience was evaluated through a series of interviews. The data collected over 3 years indicated that students from both groups had very similar academic performances; however, the students who completed the project-based assignment reported better engagement in the learning process as they enjoyed the opportunity to experience the practical aspects of soil mechanics. The obtained results also revealed low motivation among students to embrace new learning approaches such as PBL, as the majority of them preferred more traditional methods of teaching.  相似文献   

17.
Many new methods have contributed to the learning of anatomy, including several interactive methods, increasing the effectiveness of educational programs. The effectiveness of an educational program involving several interactive learning methods such as problem-based learning and reciprocal peer teaching was researched in this study. A quasi-experimental before–after study on three consecutive groups of second-year students at the Grenoble School of Medicine was conducted. The lectures were replaced by an educational program based on the problem-based learning method and reciprocal peer teaching. The first session was dedicated to reading clinical cases illustrating the medical concept, so that the learning objectives for the second session could be set. Then, after viewing digital courses, the second session was dedicated to a synthetic presentation by the students themselves, followed by an interactive summary with the teacher. The analysis of 630 students showed a significant increase in the theory test results for those who took part in the intervention: 9.71 versus 9.19 (β = 0.57, P = 0.036). Moreover, satisfaction was high after the intervention (mean = 4.5/5), and when comparing the two pedagogical approaches the students showed a clear preference for the program implemented with the concepts highlighted such as interactivity, in-depth work, group work, and autonomy. A multifaceted interactive pedagogy program could have a significant impact on the results of the theoretical concepts presented and on satisfaction as well as increased investment by students in learning anatomy.  相似文献   

18.
19.
The purpose of the present pilot study was to evaluate the benefits of innovative teaching methodologies introduced to final year occupational and physical therapy students in Christian Medical College in India. Students' satisfactions along the long-term retention of knowledge and clinical application of the respiratory anatomy have been assessed. The final year undergraduate physical therapy and occupational therapy students had respiratory anatomy teaching over two sessions. The teaching involved case-based learning and integrated anatomy lectures (vertical integration) with the Anatomy department. Pretest and immediate and follow-up post-tests were conducted to assess the effectiveness of the innovative methods. A feedback questionnaire was marked to grade case-based learning. The method of integrated and case-based teaching was appreciated and found to be useful in imparting knowledge to the students. Students retained the gained knowledge adequately and the same was inferred by statistically significant improvement in both post-test scores. Vertical integration of anatomy in the final year reinforces their existing knowledge of anatomy. Case-based learning may facilitate the development of effective and clinically sound therapists.  相似文献   

20.
The ability to deliver sufficient core anatomical knowledge and understanding to medical students with limited time and resources remains a major challenge for anatomy educators. Here, we report the results of switching from a primarily didactic method of teaching to supported self-directed learning for students studying anatomy as part of undergraduate medicine at the University of Edinburgh. The supported self-directed approach we have developed makes use of an integrated range of resources, including formal lectures and practical sessions (incorporating gross anatomy specimens, medical imaging technologies, anatomical models, clinical scenarios, and surface anatomy workstations). In practical sessions, students are provided with a custom-made workbook that guides them through each session, with academic staff, postgraduate tutors, and near-peer teaching assistants present to deal with misunderstandings and explain more complicated topics. This approach retains many of the best attributes of didactic teaching but blends them with the advantages associated with self-directed learning approaches. The switch to supported self-directed learning-initially introduced in 2005-resulted in a significant improvement in anatomy examination scores over the subsequent period of five years, manifesting as an increase in the average anatomy practical spot examination mark, less students failing to obtain the pass mark and more students passing with distinction. We conclude that the introduction of supported self-directed learning improved students' engagement, leading to deeper learning and better understanding and knowledge of anatomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号