首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Didactic lessons are only one part of the multimodal teaching strategies used in gross anatomy courses today. Increased emphasis is placed on providing more opportunities for students to develop lifelong learning and critical thinking skills during medical training. In a pilot program designed to promote more engaged and independent learning in anatomy, self‐study modules were introduced to supplement human gross anatomy instruction at Joan C. Edwards School of Medicine at Marshall University. Modules use three‐dimensional constructs to help students understand complex anatomical regions. Resources are self‐contained in portable bins and are accessible at any time. Students use modules individually or in groups in a structured self‐study format that augments material presented in lecture and laboratory. Pilot outcome data, measured by feedback surveys and examination performance statistics, suggest that the activity may be improving learning in gross anatomy. Positive feedback on both pre‐ and post‐examination surveys showed that students felt the activity helped to increase their understanding of the topic. In concordance with student perception, average examination scores on module‐related laboratory and lecture questions were higher in the two years of the pilot program compared with the year before its initiation. Modules can be fabricated on a modest budget using minimal resources, making implementation practical for smaller institutions. Upper level medical students assist in module design and upkeep, enabling continuous opportunities for vertical integration across the curriculum. This resource offers a feasible mechanism for enhancing independent and lifelong learning competencies, which could be a valuable complement to any gross anatomy curriculum. Anat Sci Educ 7: 406–416. © 2014 American Association of Anatomists.  相似文献   

2.
Curricular changes continue at United States medical schools and directors of gross anatomy, microscopic anatomy, neuroscience/neuroanatomy, and embryology courses continue to adjust and modify their offerings. Developing and supplying data related to current trends in anatomical sciences education is important if informed decisions are going to be made in a time of curricular and course revision. Thus, a survey was sent to course directors during the 2012–2013 academic years to gather information on total course hours, lecture and laboratory hours, the type of laboratory experiences, testing and competency evaluation, and the type of curricular approach used at their institution. The data gathered were compared to information obtained from previous surveys and conclusions reached were that only small or no change was observed in total course, lecture and laboratory hours in all four courses; more gross anatomy courses were part of an integrated curriculum since the previous survey; virtual microscopy with and without microscopes was the primary laboratory activity in microscopic anatomy courses; and neuroscience/neuroanatomy and embryology courses were unchanged. Anat Sci Educ 7: 321–325. © 2014 American Association of Anatomists.  相似文献   

3.
The University of Debrecen's Faculty of Medicine has an international, multilingual student population with anatomy courses taught in English to all but Hungarian students. An elective computer‐assisted gross anatomy course, the Computer Human Anatomy (CHA), has been taught in English at the Anatomy Department since 2008. This course focuses on an introduction to anatomical digital images along with clinical cases. This low‐budget course has a large visual component using images from magnetic resonance imaging and computer axial tomogram scans, ultrasound clinical studies, and readily available anatomy software that presents topics which run in parallel to the university's core anatomy curriculum. From the combined computer images and CHA lecture information, students are asked to solve computer‐based clinical anatomy problems in the CHA computer laboratory. A statistical comparison was undertaken of core anatomy oral examination performances of English program first‐year medical students who took the elective CHA course and those who did not in the three academic years 2007–2008, 2008–2009, and 2009–2010. The results of this study indicate that the CHA‐enrolled students improved their performance on required anatomy core curriculum oral examinations (P < 0.001), suggesting that computer‐assisted learning may play an active role in anatomy curriculum improvement. These preliminary results have prompted ongoing evaluation of what specific aspects of CHA are valuable and which students benefit from computer‐assisted learning in a multilingual and diverse cultural environment. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

4.
Visualization of the complex courses of the cranial nerves by students in the health‐related professions is challenging through either diagrams in books or plastic models in the gross laboratory. Furthermore, dissection of the cranial nerves in the gross laboratory is an extremely meticulous task. Teaching and learning the cranial nerve pathways is difficult using two‐dimensional (2D) illustrations alone. Three‐dimensional (3D) models aid the teacher in describing intricate and complex anatomical structures and help students visualize them. The study of the cranial nerves can be supplemented with 3D, which permits the students to fully visualize their distribution within the craniofacial complex. This article describes the construction and usage of a virtual anatomy platform in Second Life?, which contains 3D models of the cranial nerves III, V, VII, and IX. The Cranial Nerve Skywalk features select cranial nerves and the associated autonomic pathways in an immersive online environment. This teaching supplement was introduced to groups of pre‐healthcare professional students in gross anatomy courses at both institutions and student feedback is included. Anat Sci Educ 7: 469–478. © 2014 American Association of Anatomists.  相似文献   

5.
Medical schools are increasingly integrating professionalism training into their gross anatomy courses, teaching ethical behavior and humanistic attitudes through the dissection experience. However, many schools continue to take a traditional, technical approach to anatomical education while teaching professionalism in separate courses. This interview-based study explored how students viewed the body donor and the professional lessons they learned through dissection at one such medical school. All students oscillated involuntarily between seeing the cadaver as a specimen for learning and seeing the cadaver as a person, with some students intentionally cultivating one of these ways of seeing over the other. These views shaped students’ emotional and moral responses to the experiences of dissection. The “specimen” view facilitated a technical, detached approach to dissection, while the “person” view made students engage emotionally. Further, students who intentionally cultivated a “specimen” view generally felt less moral distress about dissection than students who intentionally cultivated a “person” view. The concept of respect gave students permission to perform dissections, but “person-minded” students developed more complex rules around what constituted respectful behavior. Both groups of students connected the gross anatomy experience to their professional development, but in different ways. “Specimen-minded” students intentionally objectified the body to learn the emotional control physicians need, while “person-minded” students humanized the body donor to promote the emotional engagement required of physicians. These findings support efforts to integrate professionalism teaching into gross anatomy courses, particularly content, addressing the balance between professional detachment and concern.  相似文献   

6.
The process of creating and administering traditional tagged anatomy laboratory examinations is time consuming for instructors and limits laboratory access for students. Depending on class size and the number of class, sections, creating, administering, and breaking down a tagged laboratory examination may involve one to two eight‐hour days. During the time that a tagged examination is being created, student productivity may be reduced as the anatomy laboratory is inaccessible to students. Further, the type of questions that can be asked in a tagged laboratory examination may limit student assessment to lower level cognitive abilities and may limit the instructors' ability to assess the students' understanding of anatomical and clinical concepts. Anatomy is a foundational science in the Physical Therapy curriculum and a thorough understanding of anatomy is necessary to progress through the subsequent clinical courses. Physical therapy curricula have evolved to reflect the changing role of physical therapists to primary caregivers by introducing a greater scope of clinical courses earlier in the curriculum. Physical therapy students must have a thorough understanding of clinical anatomy early in the education process. However, traditional anatomy examination methods may not be reflective of the clinical thought processes required of physical therapy students. Traditional laboratory examination methods also reduce student productivity by limiting access during examination set‐up and breakdown. To provide a greater complexity of questions and reduced overall laboratory time required for examinations, the Physical Therapy Program at Mercer University has introduced oral laboratory examinations for the gross anatomy course series. Anat Sci Educ 6: 271–276. © 2012 American Association of Anatomists.  相似文献   

7.
Anatomy students studying dissected anatomical specimens were subjected to either a loosely‐guided, self‐directed learning environment or a strictly‐guided, preformatted gross anatomy laboratory session. The current study's guiding questions were: (1) do strictly‐guided gross anatomy laboratory sessions lead to higher learning gains than loosely‐guided experiences? and (2) are there differences in the recall of anatomical knowledge between students who undergo the two types of laboratory sessions after weeks and months? The design was a randomized controlled trial. The participants were 360 second‐year medical students attending a gross anatomy laboratory course on the anatomy of the hand. Half of the students, the experimental group, were subjected without prior warning to station‐based laboratory sessions; the other half, the control group, to loosely‐guided laboratory sessions, which was the course's prevailing educational method at the time. The recall of anatomical knowledge was measured by written reproduction of 12 anatomical names at four points in time: immediately after the laboratory experience, then one week, five weeks, and eight months later. The strictly‐guided group scored higher than the loosely‐guided group at all time‐points. Repeated ANOVA showed no interaction between the results of the two types of laboratory sessions (P = 0.121) and a significant between‐subject effect (P ≤ 0.001). Therefore, levels of anatomical knowledge retrieved were significantly higher for the strictly‐guided group than for the loosely‐guided group at all times. It was concluded that gross anatomy laboratory sessions with strict instructions resulted in the recall of a larger amount of anatomical knowledge, even after eight months. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

8.
The role of human dissection in modern medical curricula has been a topic of intense debate. In part, this is because dissection can be time-consuming and curricular hours are being monitored more carefully. This has led some to question the efficacy and importance of dissection as a teaching method. While this topic has received considerable attention in the literature, the question of how dissection impacts learning has been difficult to evaluate in a real-world, high-stakes setting since participation in dissection is often one of many variables. In this study, this challenge was overcome due to a change in the curriculum of a Special Master Program (SMP) that permitted a comparison between two years of students that learned anatomy using prosection only and two years of students that participated in dissection laboratories. Since each class of SMP students took courses in the medical school, and the medical school anatomy curriculum was constant, medical student performance served as a control throughout the study period. Results demonstrate that SMP students who learned through prosection had lower performance on anatomy practical and written examinations compared to medical students. When the SMP program changed and students started participating in dissection, there were measurable improvements in both practical and written examinations. These findings provide evidence of dissection’s role in learning and applying anatomy knowledge both within and outside the gross anatomy laboratory.  相似文献   

9.
This pilot study was designed to assess the perceptions of physical therapy (PT) and occupational therapy (OT) students regarding the use of computer-assisted pedagogy and prosection-oriented communications in the laboratory component of a human anatomy course at a comprehensive health sciences university in the southeastern United States. The goal was to determine whether student perceptions changed over the course of a summer session regarding verbal, visual, tactile, and web-based teaching methodologies. Pretest and post-test surveys were distributed online to students who volunteered to participate in the pilot study. Despite the relatively small sample size, statistically significant results indicated that PT and OT students who participated in this study perceived an improved ability to name major anatomical structures from memory, to draw major anatomical structures from memory, and to explain major anatomical relationships from memory. Students differed in their preferred learning styles. This study demonstrates that the combination of small group learning and digital web-based learning seems to increase PT and OT students' confidence in their anatomical knowledge. Further research is needed to determine which forms of integrated instruction lead to improved student performance in the human gross anatomy laboratory.  相似文献   

10.
The anatomical sciences have always been regarded as an essential component of medical education. In Canada, the methodology and time dedicated to anatomy teaching are currently unknown. Two surveys were administered to course directors and discipline leaders to gain a comprehensive view of anatomical education in Canadian medical schools. Participants were queried about contact hours (classroom and laboratory), content delivery and assessment methods for gross anatomy, histology, and embryology. Twelve schools responded to both surveys, for an overall response rate of 64%. Overall, Canadian medical students spend 92.8 (± 45.4) hours (mean ± SD) studying gross anatomy, 25.2 (± 21.0) hours for histology, and 7.4 (± 4.3) hours for embryology. Gross anatomy contact hours statistically significantly exceeded those for histology and embryology. Results show that most content is delivered in the first year of medical school, as anatomy is a foundational building block for upper-year courses. Laboratory contact time for gross anatomy was 56.8 (± 30.7) hours, histology was 11.4 (± 16.2) hours, and embryology was 0.25 (± 0.6) hours. Additionally, 42% of programs predominantly used instructor/technician-made prosections, another 33% used a mix of dissection and prosections and 25% have their students complete cadaveric dissections. Teaching is either completely or partially integrated into all Canadian medical curricula. This integration trend in Canada parallels those of other medical schools around the world where programs have begun to decrease contact time in anatomy and increase integration of the anatomical sciences into other courses. Compared to published American data, Canadian schools offer less contact time. The reason for this gap is unknown. Further investigation is required to determine if the amount of anatomical science education within medical school affects students' performance in clerkship, residency and beyond.  相似文献   

11.
At most institutions, education in the anatomical sciences has undergone several changes over the last decade. To identify the changes that have occurred in gross anatomy, microscopic anatomy, neuroscience/neuroanatomy, and embryology courses, directors of these courses were asked to respond to a survey with questions pertaining to total course hours, hours of lecture, and hours of laboratory, whether the course was part of an integrated program or existed as a stand‐alone course, and what type of laboratory experience occurred in the course. These data were compared to data obtained from a similar survey in 2002. Comparison between the data sets suggests several key points some of which include: decreased total hours in gross anatomy and neuroscience/neuroanatomy courses, increased use of virtual microscopy in microscopic anatomy courses, and decreased laboratory hours in embryology courses. Anat Sci Educ 2: 253–259, 2009. © 2009 American Association of Anatomists.  相似文献   

12.
Anatomical sciences curricula have been under constant reform over the years, with many countries having to reduce course hours while trying to preserve laboratory time. In Mexico, schools have historically been autonomous and unregulated, and data regarding structure and methods are still lacking. A national survey was sent by the Mexican Society of Anatomy to 110 anatomical sciences educators. The questionnaire consisted of 50 items (open and multiple choice) for gross anatomy, microscopic anatomy, neuroanatomy, and embryology courses in medical schools across Mexico. A clinical approach was the most common course approach in all disciplines. Contact course hours and laboratory hours were higher in Mexican anatomy education compared to other countries, with the highest reported contact hours for embryology (133.4 ± 44.1) and histology (125 ± 33.2). There were similar contact hours to other countries for gross anatomy (228.5 ± 60.5). Neuroanatomy course hours (43.9 ± 13.1) were less than reported by the United States and similar to Saudi Arabia and higher than the United Kingdom. Dissection and microscopy with histological slides predominate as the most common laboratory activities. Traditional methods prevail in most of the courses in Mexico and only a few educators have implemented innovative and technological tools. Implementation of new methods, approaches, and curricular changes are needed to enhance anatomical sciences education in Mexico.  相似文献   

13.
At the Medical College of Wisconsin, a procedure was developed to allow computerized grading and grade reporting of laboratory practical examinations in the Clinical Human Anatomy course. At the start of the course, first year medical students were given four Lists of Structures. On these lists, numbered items were arranged alphabetically; the items were anatomical structures that could be tagged on a given lab practical examination. Each lab exam featured an anatomy laboratory component and a computer laboratory component. For the anatomy lab component, students moved from one question station to another at timed intervals and identified tagged anatomical structures. As students identified a tagged structure, they referred to a copy of the list (provided with their answer sheet) and wrote the number corresponding to the structure on their answer sheet. Immediately after the anatomy lab component, students were escorted to a computer instruction laboratory where they typed their answer numbers into a secured testing component of a learning management system that recorded their answers for automatic grading. After a brief review of examination scores and item analysis by faculty, exam scores were reported to students electronically. Adding this brief computer component to each lab exam greatly reduced faculty grading time, reduced grading errors and provided faster performance feedback for students without changing overall student performance. Anat Sci Ed 1:220–223, 2008. © 2008 American Association of Anatomists.  相似文献   

14.
Anatomy instruction has evolved over the past two decades as many medical schools have undergone various types of curricular reform. To provide empirical evidence about whether or not curricular changes impact the acquisition and retention of anatomy knowledge, this study investigated the effect of variation in gross anatomy course hours, curricular approach (stand‐alone versus integrated), and laboratory experience (dissection versus dissection and prosection) on USMLE Steps 1 and 2 Clinical Knowledge (CK) scores. Gross anatomy course directors at 54 United States schools provided information about their gross anatomy courses via an online survey (response rate of 42%). Survey responses were matched with USMLE scores for 6,411 examinees entering LCME‐accredited schools in 2007 and taking Step 1 for the first time in 2009. Regression analyses were conducted to examine relationships between gross anatomy instructional characteristics and USMLE performance. Step 1 total scores, Step 1 gross anatomy sub‐scores, and Step 2 CK scores were unrelated to instructional hours, controlling for MCAT scores. Examinees from schools with integrated curricula scored slightly lower on Steps 1 and 2 CK than those from stand‐alone courses (effect sizes of 2.1 and 1.9 on score scales with SDs of 22 and 20, respectively). Examinees with dissection and prosection experience performed slightly better on Step 2 CK than examinees in courses with dissection only laboratories (effect size of 1.2). Results suggest variation in course hours is unrelated to performance on Steps 1 and 2 CK. Although differences were observed in relation to curricular approach and laboratory experience, effect sizes were small. Anat Sci Educ 6: 3–10. © 2012 American Association of Anatomists.  相似文献   

15.
The most effective method to teach gross anatomy is largely unknown. This study examined two teaching methods utilized in a physical therapy and occupational therapy gross anatomy course, (1) alternating dissection with peer teaching every other laboratory session and (2) faculty demonstrations during laboratory sessions. Student (n = 57) subgroup (A or B) academic performance was determined using written, laboratory practical, and palpation practical examinations. Subgroup A performed significantly better on laboratory practical examination questions pertaining to dissected, in comparison to peer-taught structures (67.1% vs. 60.2%, P = 0.008). Subgroup B performed significantly better on laboratory practical examination questions pertaining to peer-taught, in comparison to dissected structures (64.1% vs. 57.9%, = 0.001). When Subgroup A was compared to Subgroup B, there were no statistically significant differences on laboratory practical examination question types, whether the subgroup learned the structure through dissection or peer teaching. Based on within and between subgroup comparisons, faculty demonstrations had no effect on written, laboratory practical, or palpation practical examination scores. Although limited, data suggest that the student roles when alternating dissection with peer teaching every other laboratory session appear to be equally effective for learning gross anatomy. The benefits of this method include decreased student/faculty ratio in laboratory sessions and increased time for independent study. Faculty demonstrations during laboratory sessions do not seem to improve student academic performance.  相似文献   

16.
Gross anatomy is considered by many the backbone of medical education. While learning anatomy has a reputation of requiring mainly rote memorization, modern day anatomy education often involves instruction and assessment at cognitive levels that foster higher-order thinking. In many instances, these higher-order anatomical concepts are taught to graduate students in healthcare-related fields, such as medicine. At this level, students are expected to apply and analyze anatomical information since that is what will ultimately be expected of them as professionals. In contrast, undergraduate anatomy education is typically more introductory in nature and often takes place in the setting of a large-enrollment course that serves as a prerequisite for many health sciences degree programs. In this study, variables related to the assessment of higher-order concepts in clinical anatomy were compared between first-year medical students and undergraduate students enrolled in an upper-level human gross anatomy course. Results demonstrate that undergraduate students perform lower than medical students overall, but the degree of difference in how they perform on higher- versus lower-order questions is comparable. The most notable exception is on practical examinations, where undergraduate students tend to struggle more with applying and analyzing information. Exploration of additional variables provides insight into how the cognitive level being assessed affects the time it takes to answer a question and how different practical examination question types and formats influence student performance. Findings presented in this study have implications for designing anatomy courses and underscore the importance of blueprinting assessments.  相似文献   

17.
There are few graduate programs available for pursuing a doctorate in anatomy where students gain specific training in gross anatomy dissection and the responsibilities of a medical educator. In light of this fact, the University of Kentucky created a Graduate Certificate in Anatomical Sciences Instruction in 2006. This 12‐credit hour curriculum includes detailed training in gross anatomy and/or neuroscience courses, practicum experiences, a seminar class in pedagogical literature, and a course in educational strategies for the anatomical sciences. The award of certificate completion affirms that the candidate has demonstrated faculty‐supervised proficiency in anatomy dissection, instruction in anatomy topics, and teaching strategies for anatomy. Seventeen graduate students have earned the certificate since its inception; nine students accepted teaching positions in anatomy following their graduate training and currently nine certificate graduates have assistant (six) or associate (three) professor positions in academia. In 2016, an anonymous survey including Likert‐style and open‐ended questions was emailed to all certificate graduates. Graduates favorably responded (each question averaged 4.4 or greater out of 5) that the certificate increased their awareness of teaching‐faculty responsibilities, adequately prepared them for teaching‐related duties, and positively contributed toward their first employment. Graduates indicated that the lecturing and dissection experience, awareness of faculty responsibilities, and job preparation (e.g., teaching philosophy development) were the most helpful aspects of the certificate. These results indicate that the Graduate Certificate in Anatomical Sciences Instruction is viewed by its graduates and their employers as a valuable teaching credential that can be attained alongside a basic science degree. Anat Sci Educ 11: 516–524. © 2018 American Association of Anatomists.  相似文献   

18.
Pre‐clinical anatomy curricula must provide medical students with the knowledge needed in a variety of medical and surgical specialties. But do physicians within specialties agree about what anatomical knowledge is most important in their practices? And, what is the common core of anatomical knowledge deemed essential by physicians in different specialties? Answers to these questions would be useful in designing pre‐clinical anatomy courses. The primary aim of this study was to assess the importance of a human gross anatomy course by soliciting the opinions of physicians from a range of specialties. We surveyed 93 physicians to determine the importance of specific anatomical topics in their own practices. Their responses were analyzed to assess variation in intra‐ and inter‐departmental attitudes toward the importance of anatomy. Nearly all of the topics taught in the course were deemed important by the clinicians as a group, but respondents showed little agreement on the rank order of importance of anatomical topics. Overall, only medical imaging received high importance by nearly all respondents, and lower importance was attached to embryology and lymphatic anatomy. Our survey data, however, also suggested distinct hierarchies in the importance assigned to anatomical topics within specialties. Given that physicians view the importance of anatomy differently, we suggest that students revisit anatomy through a vertically integrated curriculum tailored to provide specialty‐specific anatomical training to advanced students based on their areas of clinical interest. Integration of medical imaging into pre‐clinical anatomy courses, already underway in many medical schools, is of high clinical relevance. Anat Sci Educ 7: 251–261. © 2013 American Association of Anatomists.  相似文献   

19.
The affordances of technology-based assessments, like the objectively structured practical examination, have become an integral part of gross anatomy courses. The Department of Anatomy Faculty of Medicine at the University of Warmia and Mazury developed and introduced an application for tablet devices which has been implemented in student examinations and assessments, called the tablet-assisted objective structured spotter practical examination. It was created to simplify the educational process and to build a rich learning environment, facilitating deep learning for students through examination and feedback data. The method consists of cadaver stations with traditional corresponding pin spotters in an expanded tablet application. It not only provides instant feedback on various observations of teaching–learning skills but has also positively affected the entire process of education. The method provides an unbiased evaluation of knowledge and understanding of the anatomy course, ensuring objectivity and standardization. The current study was performed on a total of 608 first-year medical students in Polish and English divisions and focused on the observed advantages since the new method was introduced. Outcomes indicate that after the implementation of the method for both the Polish and English divisions' first-year medical students, the mean score of examinations significantly increased compared to other teaching–learning methods. The study highlights that students were excited about the implementation of the new method and identified its many benefits. It is recognized that technological development and the digital environment offer a range of opportunities and added value versus traditional assessment activities, methods, and processes.  相似文献   

20.
Multimedia and simulation programs are increasingly being used for anatomy instruction, yet it remains unclear how learning with these technologies compares with learning with actual human cadavers. Using a multilevel, quasi‐experimental‐control design, this study compared the effects of “Anatomy and Physiology Revealed” (APR) multimedia learning system with a traditional undergraduate human cadaver laboratory. APR is a model‐based multimedia simulation tool that uses high‐resolution pictures to construct a prosected cadaver. APR also provides animations showing the function of specific anatomical structures. Results showed that the human cadaver laboratory offered a significant advantage over the multimedia simulation program on cadaver‐based measures of identification and explanatory knowledge. These findings reinforce concerns that incorporating multimedia simulation into anatomy instruction requires careful alignment between learning tasks and performance measures. Findings also imply that additional pedagogical strategies are needed to support transfer from simulated to real‐world application of anatomical knowledge. Anat Sci Educ 7: 331–339. © 2014 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号