首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
人教版初中《代数》第三册给出了一个重要的代数恒等式:ax2+bx+c=a(x-x1)(x-x2),其中x1,x2是二次方程ax2+bx+c=0的两个根,也是二次函数y=ax2+bx+c与x轴两个交点的横坐标.巧妙地运用这一恒等式解题可使解题思路明显,过程简捷.下面以若干竞赛题为例说明这一恒等式的应用.  相似文献   

2.
李彩兰 《初中生》2012,(18):21-23
正如果一元二次方程ax~2+bx+c=0(a≠0)的两个根为x_1,x_2,那么x_1+x_2=-b/a,x_1·x_2=c/a这就是根与系数的关系,也称为韦达定理.下面以2011年中考试题为例,归纳它在中考解题中的几种典型应用,供你复习时参考.  相似文献   

3.
设一元二次方程ax~2+bx+c=0(a≠0)有二实根x_1,x_2,易知有如下两条性质: 性质1.若a+b+c=0,则x_1=1,x_2=c/a;反之,若x_1=1,x_2=c/a,则a+b+c=0.  相似文献   

4.
若x_1、x_2是方程ax~2+bx+c=0(a≠0)的两根,则ax_1~2+bx_1+c=0和ax_2~2+bx_2十c=0.这种把根代入原方程,即让根"回娘家"的方法在解题中有着独特的作用.  相似文献   

5.
利用构造法解题,是较长一段时间来各类数学杂志讨论的热门。笔者认为,这些讨论对于训练思维、培养观察、联想、综合分析能力、提高解题水平,无疑是有益的。本文试图从二次式这一个角度,用构造法探求数学竞赛中有关问题,供同行们参考。二次式通常指二次方程、二次函数及二次不等式等,其主要性质有: Ⅰ.若实系数一元二次方程ax~2+bx+c=0(a≠0)有实数解,则△=b~2-4ac≥0,x_1+x_2=-(b/a),x_1·x_2=c/a,反之变然, Ⅱ.二次函数y=ax~2+bx+c(a≠0),  相似文献   

6.
初三代数教材对一元二次方程根与系数关系叙述为:如果ax~2+bsr+c=0(a≠0)的两个根是x_1、x_2,那么x_1+x_2=-b/a,x_1·x_2=c/a。此定理对结论成立的先决条件交代很清楚,即“原方程存在两个根x_1和x_2”。但在教学过程中,我发现有些学生在运用这一关系时却只记住了结果,忽视了条件,因粗心大意导致解题错误。 错例1.判断正误:方程ax~2+bx+c=(a≠0)两根之和为-b/a。( ) 错误判断为“对”。 错例2.若方程x~2+(m~2-1)x+1+m=0的两根互为相反数,则m的值为( ) (A)1或-1; (B)1; (C)-1; (D)0。 错选(A)。  相似文献   

7.
<正>如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0的求根公式先求出它的两个根,然后分别计算这两根之和与两根之积.笔者在文[1]中不借助于一元二次方程的求根公式给出了韦达定理的三种代数证法,本文再给出韦达定理  相似文献   

8.
设方程 ax~2+bx+c=0(a≠0)的两根为 x_1,x_2,那么 x_1+x_2=-(b/a),x_1·x_2=(c/a).这就是一元二次方程根与系数的关系.由根与系数的关系,我们知道:以两个数 x_1,x_2为根的一元二次方程(二次项系数为1)是x~2-(x_1+x_2)x+x_1·x_2=0.根与系数的关系使我们能够由方程来讨论根的性质;反之,则可以由根的性质来确定方程的系数.因而,根与系数的关系的应用相当广泛.我  相似文献   

9.
一元二次方程的根与系数之间存在着下列关系:如果ax~2+bx+c=0(a≠0)的两个根是x_1、x_2,那么x_1+x_2=-b/a,x_1·x_2=c/a.这就是有的参考书所讲的“韦达定理”.  相似文献   

10.
实系数一元二次方程ax~2+bx+c=0(a≠0)有性质: (1)若a+b+c=0,则方程的两根为x_1=1,x_2=c/a;反之,若一根为1,则a+b+c=0。  相似文献   

11.
在初中《代数》第三册第37页中有这样一个结论: 若x_1,x_2是一元二次方程ax~2+bx+c=0的两根,则有ax~2+bx+c=a(x-x_1)(x-x_2). 灵活运用上述结论,解题中常能收到事半功倍的效果.下面以初中数学竞赛题为例加以说明.例1己知  相似文献   

12.
一、韦达定理的意义一元二次方程ax~2+bx+c=0的根x_1、x_2与系数a、b、c有如下关系:x_1+x_2=-b/a,x_1x_2=c/a. 这是法国数学家韦达于1559年首先给出的,因而称为“韦达定理”.特别地,对于方程x~2+px+q=0而言,它的两根x_1、x_2满足x_1+x_2=-p,且x_1x_2=q. 顺便提一下韦达定理的逆定理:  相似文献   

13.
屈昕 《初中生辅导》2015,(30):22-25
数学解题能力的提高,需要借助丰富的解题经验.适当记住一些简洁的结论,可以快速抓住问题的本质,简化思维过程,提高解题效率. 在学习一元二次方程的过程中,我们可以得到下面的结论: 一、设x1、x2是一元二次方程ax2+ bx+c=0(a≠0)的两实根,那么x1+x2=-b/a,x1x2 =c/a 这是因为,当b2-4ac≥0时,一元二次方程的两根为-b+√b2-4ac/2a和-b-√b2-4ac/2c.  相似文献   

14.
<正>二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c的对称轴为x=-1,A(2,1)、B(m,1)为抛物线上  相似文献   

15.
用恒等式解题,大体上有两个途径:一是应用已知的基本恒等式求解;二是根据问题的特点推证出一个适用的恒等式,这通常需要相当高的运算技巧和能力.例1设a、b、c都是正数,满足条件(a2 b2 c2)2>2(a4 b4 c4).求证:a、b、c一定是某个三角形的三边长.证明先把条件改成2a2b2 2b2c2 2c2a2-a4-b4-c4>0.应用恒等式(这是一个较常见的因式分解)2(a2b2 b2c2 c2a2)-a4-b4-c4=(a b c)(a b-c)(b c-a)(c a-b),得(a b c)(a b-c)(b c-a)(c a-b)>0,即(a b-c)(b c-a)(c a-b)>0.若上式左边有两个因式为负(另一个因式为正),例如,若a b-c<0,b c-a<0,两式相加得b<0,这…  相似文献   

16.
在解数学题中,我们总希望减少计算量,这样既可以提高解题速度.又可以避免解题过程中因复杂的运算而造成的错误.笔者结合教学中的所见谈谈减少计算量的几种途径.一巧妙地应用定义例1 方程 ax~2+bx+c=0(a≠0)的两  相似文献   

17.
我们知道,如果抛物线y=ax~2+bx+c与x轴有两个交点,横坐标分别是x_1和x_2,则这个抛物线可写成交点式y=a(x…x_1)(x-x_2)。本文提供几个利用交点式求二次函数的解析式的例题,供同学们学习时参考。  相似文献   

18.
二次函数的一般形式是:y=ax~2+bx+c(a≠0),经配方,得y=a(x+(b/2a))~2+(4ac-b~2)/4a,设b/2a=m,(4ac-b~2)/4a=k 变式一:y=a(x+m)~2+k(a≠0) 二次函数图象的顶点坐标是(-m,k),对称轴方程是x=-m,即当x=-m时,函数y取得最大值(a>0)或最小值(a<0),“最”值是k。 若抛物线y=ax~2+bx+c(a≠0)与x轴有交点(x_1,0)、(x_2,0)(x_1=x_2时相切),即方  相似文献   

19.
1.构造等式例 1.已知 x+ y+ z=3,求3(x- 1) (y- 1) (z- 1)(x- 1) 3 + (y- 1) 3 + (z- 1) 3 的值。解 :根据所求代数式的结构特征 ,可构造恒等式 :a3 + b3 + c3 - 3abc=(a+ b+ c) (a2 + b2 + c2 -ab- bc- ac)。设 a=x- 1,b=y- 1,c=z-1,有 a+ b+ c=x+ y+ z- 3=0。将上面三式代入恒等式得 :(x- 1) 3 + (y- 1) 3 + (z- 1) 3- 3(x- 1) (y- 1) (z- 1) =0 ,∴ 3(x- 1) (y- 1) (z- 1)(x- 1) 3 + (y- 1) 3 + (z- 1) 3=1。2 .构造不等式例 2 .实数 a、b、c、d满足 a+b+ c+ d=5 ,a2 + b2 + c2 + d2 =7,求 a的范围。解 :根据第一个等式的平方与第二个等…  相似文献   

20.
<正>我们知道,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0 (a≠0)的根;反之,一元二次方程ax2+bx+c=0 (a≠0)的根;反之,一元二次方程ax2+bx+c=0 (a≠0)的根是二次函数y=ax2+bx+c=0 (a≠0)的根是二次函数y=ax2+bx+c (a≠0)的图象与x轴交点的横坐标.在求解相关问题时,它们之间的这种关系如果能够灵活地运用,则不仅可以使解题过程大为简化,而且还可以获得巧解.下面举例说明.一、判断二次函数图象与x轴的交点情况  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号