首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Separation and sorting of biological entities (viruses, bacteria, and cells) is a critical step in any microfluidic lab-on-a-chip device. Acoustofluidics platforms have demonstrated their ability to use physical characteristics of cells to perform label-free separation. Bandpass-type sorting methods of medium-sized entities from a mixture have been presented using acoustic techniques; however, they require multiple transducers, lack support for various target populations, can be sensitive to flow variations, or have not been verified for continuous flow sorting of biological cells. To our knowledge, this paper presents the first acoustic bandpass method that overcomes all these limitations and presents an inherently reconfigurable technique with a single transducer pair for stable continuous flow sorting of blood cells. The sorting method is first demonstrated for polystyrene particles of sizes 6, 10, and 14.5 μm in diameter with measured purity and efficiency coefficients above 75 ± 6% and 85 ± 9%, respectively. The sorting strategy was further validated in the separation of red blood cells from white blood cells and 1 μm polystyrene particles with 78 ± 8% efficiency and 74 ± 6% purity, respectively, at a flow rate of at least 1 μl/min, enabling to process finger prick blood samples within minutes.  相似文献   

2.
Blood analysis plays a major role in medical and science applications and white blood cells (WBCs) are an important target of analysis. We proposed an integrated microfluidic chip for direct and rapid trapping WBCs from whole blood. The microfluidic chip consists of two basic functional units: a winding channel to mix and arrays of two-layer trapping structures to trap WBCs. Red blood cells (RBCs) were eliminated through moving the winding channel and then WBCs were trapped by the arrays of trapping structures. We fabricated the PDMS (polydimethylsiloxane) chip using soft lithography and determined the critical flow velocities of tartrazine and brilliant blue water mixing and whole blood and red blood cell lysis buffer mixing in the winding channel. They are 0.25 μl/min and 0.05 μl/min, respectively. The critical flow velocity of the whole blood and red blood cell lysis buffer is lower due to larger volume of the RBCs and higher kinematic viscosity of the whole blood. The time taken for complete lysis of whole blood was about 85 s under the flow velocity 0.05 μl/min. The RBCs were lysed completely by mixing and the WBCs were trapped by the trapping structures. The chip trapped about 2.0 × 103 from 3.3 × 103 WBCs.  相似文献   

3.
Acoustic trapping of minute bead amounts against fluid flow allows for easy automation of multiple assay steps, using a convenient aspirate/dispense format. Here, a method based on acoustic trapping that allows sample preparation for immuno-matrix-assisted laser desorption/ionization mass spectrometry using only half a million 2.8 μm antibody covered beads is presented. The acoustic trapping is done in 200 × 2000 μm2 glass capillaries and provides highly efficient binding and washing conditions, as shown by complete removal of detergents and sample processing times of 5-10 min. The versatility of the method is demonstrated using an antibody against Angiotensin I (Ang I), a peptide hormone involved in hypotension. Using this model system, the acoustic trapping was efficient in enriching Angiotensin at 400 pM spiked in plasma samples.  相似文献   

4.
We present an optofluidic microvalve utilizing an embedded, surface plasmon-enhanced fiber optic microheater. The fiber optic microheater is formed by depositing a titanium thin film on the roughened end-face of a silica optical fiber that serves as a waveguide to deliver laser light to the titanium film. The nanoscale roughness at the titanium-silica interface enables strong light absorption enhancement in the titanium film through excitation of localized surface plasmons as well as facilitates bubble nucleation. Our experimental results show that due to the unique design of the fiber optic heater, the threshold laser power required to generate a bubble is greatly reduced and the bubble growth rate is significantly increased. By using the microvalve, stable vapor bubble generation in the microchannel is demonstrated, which does not require complex optical focusing and alignment. The generated vapor bubble is shown to successfully block a liquid flow channel with a size of 125 μm × 125 μm and a flow rate of ∼10 μl/min at ∼120 mW laser power.  相似文献   

5.
Recent years have witnessed a strong trend towards analysis of single-cells. To access and handle single-cells, many new tools are needed and have partly been developed. Here, we present an improved version of a single-cell printer which is able to deliver individual single cells and beads encapsulated in free-flying picoliter droplets at a single-bead efficiency of 96% and with a throughput of more than 10 beads per minute. By integration of acoustophoretic focusing, the cells could be focused in x and y direction. This way, the cells were lined-up in front of a 40 μm nozzle, where they were analyzed individually by an optical system prior to printing. In agreement with acoustic simulations, the focusing of 10 μm beads and Raji cells has been achieved with an efficiency of 99% (beads) and 86% (Raji cells) to a 40 μm wide center region in the 1 mm wide microfluidic channel. This enabled improved optical analysis and reduced bead losses. The loss of beads that ended up in the waste (because printing them as single beads arrangements could not be ensured) was reduced from 52% ± 6% to 28% ± 1%. The piezoelectric transducer employed for cell focusing could be positioned on an outer part of the device, which proves the acoustophoretic focusing to be versatile and adaptable.  相似文献   

6.
Spatially varied surface treatment of a fluorescently labeled Bovine Serum Albumin (BSA) protein, on the walls of a closed (sealed) microchannel is achieved via a well-defined gradient in plasma intensity. The microchips comprised a microchannel positioned in-between two microelectrodes (embedded in the chip) with a variable electrode separation along the length of the channel. The channel and electrodes were 50 μm and 100 μm wide, respectively, 50 μm deep, and adjacent to the channel for a length of 18 mm. The electrode separation distance was varied linearly from 50 μm at one end of the channel to a maximum distance of 150, 300, 500, or 1000 μm to generate a gradient in helium plasma intensity. Plasma ignition was achieved at a helium flow rate of 2.5 ml/min, 8.5 kVpk-pk, and 10 kHz. It is shown that the plasma intensity decreases with increasing electrode separation and is directly related to the residual amount of BSA left after the treatment. The plasma intensity and surface protein gradient, for the different electrode gradients studied, collapse onto master curves when plotted against electrode separation. This precise spatial control is expected to enable the surface protein gradient to be tuned for a range of applications, including high-throughput screening and cell-biomolecule-biomaterial interactions.  相似文献   

7.
We present a 91 MHz surface acoustic wave resonator with integrated microfluidics that includes a flow focus, an expansion region, and a binning region in order to manipulate particle trajectories. We demonstrate the ability to change the position of the acoustic nodes by varying the electronic phase of one of the transducers relative to the other in a pseudo-static manner. The measurements were performed at room temperature with 3 μm diameter latex beads dispersed in a water-based solution. We demonstrate the dependence of nodal position on pseudo-static phase and show simultaneous control of 9 bead streams with spatial control of −0.058 μm/deg ± 0.001 μm/deg. As a consequence of changing the position of bead streams perpendicular to their flow direction, we also show that the integrated acoustic-microfluidic device can be used to change the trajectory of a bead stream towards a selected bin with an angular control of 0.008 deg/deg ± 0.000(2) deg/deg.  相似文献   

8.
Some aqueous reactions in biological or chemical fields are accomplished at a high temperature. When the reaction temperature is higher than 100 °C, an autoclave reactor is usually required to elevate the boiling point of the water by creating a high-pressure environment in a closed system. This work presented an alternative continuous flowing microfluidic solution for aqueous reaction with a reaction temperature higher than 100 °C. The pressure regulating function was successfully fulfilled by a small microchannel based on a delicate hydrodynamic design. Combined with micro heater and temperature sensor that integrated in a single chip by utilizing silicon-based microfabrication techniques, this pressure regulating microchannel generated a high-pressure/high-temperature environment in the upstream reaction zone when the reagents continuously flow through the chip. As a preliminary demonstration, thermal digestion of aqueous total phosphorus sample was achieved in this continuous flowing micro-reactor at a working pressure of 990 kPa (under the working flow rate of 20 nl/s) along with a reaction temperature of 145 °C. This continuous flowing microfluidic solution for high-temperature reaction may find applications in various micro total analysis systems.  相似文献   

9.
The majority of available cardiomyocyte markers are intercellular proteins, limiting our ability to enrich live cardiomyocytes from heterogeneous cell preparations in the absence of genetic labeling. Here, we describe enrichment of live cardiomyocytes from the hearts of adult mice in a label-free microfluidic approach. The separation device consisted of a vertical column (15 mm long, 700 μm diameter), placed between permanent magnets resulting in a field strength of 1.23 T. To concentrate the field at the column wall, the column was wrapped with 69 μm diameter nickel wire. Before passing the cells through the column, the cardiomyocytes in the cell suspension had been rendered paramagnetic by treatment of the adult mouse heart cell preparation with sodium nitrite (2.5 mM) for 20 min on ice. The cell suspension was loaded into the vertical column from the top and upon settling, the non-myocytes were removed by the upward flow from the column. The cardiomyocytes were then collected from the column by applying a higher flow rate (144 μl/min). We found that by applying a separation flow rate of 4.2 μl/min in the first step, we can enrich live adult cardiomyocytes to 93% ± 2% in a label-free manner. The cardiomyocytes maintained viability immediately after separation and upon 24 h in culture.  相似文献   

10.
We present dual-mode, on-demand droplet routing in a multiple-outlet microfluidic device using an oil-based magnetic fluid. Magnetite (Fe3O4) nanoparticle-contained oleic acid (MNOA) was used as a carrier phase for droplet generation and manipulation. The water-in-MNOA droplets were selectively distributed in a curved microchannel with three branches by utilizing both a hydrodynamic laminar flow pattern and an external magnetic field. Without the applied magnetic field, the droplets travelled along a hydrodynamic centerline that was displaced at each bifurcating junction. However, in the presence of a permanent magnet, they were repelled from the centerline and diverted into the desired channel when the repelled distance exceeded the minimum offset allocated to the channel. The repelled distance, which is proportional to the magnetic field gradient, was manipulated by controlling the magnet''s distance from the device. To evaluate routing performance, three different sizes of droplets with diameters of 63, 88, and 102 μm were directed into designated outlets with the magnet positioned at varying distances. The result demonstrated that the 102-μm droplets were sorted with an accuracy of ∼93%. Our technique enables on-demand droplet routing in multiple outlet channels by simply manipulating magnet positions (active mode) as well as size-based droplet separation with a fixed magnet position (passive mode).  相似文献   

11.
A technique for visualizing and quantifying reactive mixing for laminar and turbulent flow in a microscale chemical reactor using confocal-based microscopic laser induced fluorescence (confocal μ-LIF) was demonstrated in a microscale multi-inlet vortex nanoprecipitation reactor. Unlike passive scalar μ-LIF, the reactive μ-LIF technique is able to visualize and quantify micromixing effects. The confocal imaging results indicated that the flow in the reactor was laminar and steady for inlet Reynolds numbers of 10, 53, and 93. Mixing and reaction were incomplete at each of these Reynolds numbers. The results also suggested that although mixing by diffusion was enhanced near the midplane of the reactor at Rej = 53 and 93 due to very thin bands of acidic and basic fluid forming as the fluid spiraled towards the center of the reactor, near the top, and bottom walls of the reactor, the lower velocities due to fluid friction with the walls hindered the formation of these thin bands, and, thus, resulted in large regions of unmixed and unreacted fluid. At Rej = 240, the flow was turbulent and unsteady. The mixing and reaction processes were still found to be incomplete even at this highest Reynolds number. At the reactor midplane, the flow images at Rej = 240 showed unmixed base fluid near the center of the reactor, suggesting that just as in the Rej = 53 and 93 cases, lower velocities near the top and bottom walls of the reactor hinder the mixing and rection of the acidic and basic streams. Ensemble averages of line-scan profiles for the Rej = 240 were then calculated to provide statistical quantification of the microscale mixing in the reactor. These results further demonstrate that even at this highest Reynolds number investigated, mixing and reaction are incomplete. Visualization and quantification of micromixing using this reactive μ-LIF technique can prove useful in the validation of computational fluid dynamics models of micromixing within microscale chemical reactors.  相似文献   

12.
Label-free isolation of single cells is essential for the growing field of single-cell analysis. Here, we present a device which prints single living cells encapsulated in free-flying picoliter droplets. It combines inkjet printing and impedance flow cytometry. Droplet volume can be controlled in the range of 500 pl–800 pl by piezo actuator displacement. Two sets of parallel facing electrodes in a 50 μm × 55 μm channel are applied to measure the presence and velocity of a single cell in real-time. Polystyrene beads with <5% variation in diameter generated signal variations of 12%–17% coefficients of variation. Single bead efficiency (i.e., printing events with single beads vs. total number of printing events) was 73% ± 11% at a throughput of approximately 9 events/min. Viability of printed HeLa cells and human primary fibroblasts was demonstrated by culturing cells for at least eight days.  相似文献   

13.
Understanding the mechanical properties of optically transparent polydimethylsiloxane (PDMS) microchannels was essential to the design of polymer-based microdevices. In this experiment, PDMS microchannels were filled with a 100 μM solution of rhodamine 6G dye at very low Reynolds numbers (∼10−3). The deformation of PDMS microchannels created by pressure-driven flow was investigated by fluorescence microscopy and quantified the deformation by the linear relationship between dye layer thickness and intensity. A line scan across the channel determined the microchannel deformation at several channel positions. Scaling analysis widely used to justify PDMS bulging approximation was allowed when the applied flow rate was as high as 2.0 μl/min. The three physical parameters (i.e., flow rate, PDMS wall thickness, and mixing ratio) and the design parameter (i.e., channel aspect ratio = channel height/channel width) were considered as critical parameters and provided the different features of pressure distributions within polymer-based microchannel devices. The investigations of the four parameters performed on flexible materials were carried out by comparison of experiment and finite element method (FEM) results. The measured Young''s modulus from PDMS tensile test specimens at various circumstances provided reliable results for the finite element method. A thin channel wall, less cross-linker, high flow rate, and low aspect ratio microchannel were inclined to have a significant PDMS bulging. Among them, various mixing ratios related to material property and aspect ratios were one of the significant factors to determine PDMS bulging properties. The measured deformations were larger than the numerical simulation but were within corresponding values predicted by the finite element method in most cases.  相似文献   

14.
This paper describes the use of electro-hydrodynamic actuation to control the transition between three major flow patterns of an aqueous-oil Newtonian flow in a microchannel: droplets, beads-on-a-string (BOAS), and multi-stream laminar flow. We observed interesting transitional flow patterns between droplets and BOAS as the electric field was modulated. The ability to control flow patterns of a two-phase fluid in a microchannel adds to the microfluidic tool box and improves our understanding of this interesting fluid behavior.Microfluidic technologies have found use in a wide range of applications, from chemical synthesis to biological analysis to materials and energy technologies.1,2 In recent years, there has been increasing interest in two-phase flow and droplet microfluidics, owing to their potential for providing a high-throughput platform for carrying out chemical and biological analysis and manipulations.3–8 Although droplets may be generated in many different ways, such as with electric fields or extrusion through a small nozzle,9–12 the most common microfluidic methods are based on the use of either T-junctions or flow-focusing geometries with which uniform droplets can be formed at high frequency in a steady-state fashion.13,14 Various operations, such as cell encapsulation, droplet fusion, splitting, mixing, and sorting, have also been developed, and these systems have been demonstrated for a wide range of applications, including cell analysis, protein crystallization, and material synthesis.1–17In addition to forming discrete droplets, where a disperse phase is completely surrounded by a continuous phase, it is also possible in certain situations to have different phases flow side-by-side. In fact, multi-stream laminar flow, either of the same phase or different phases, has been exploited for both biochemical analysis and microfabrication.1,2,18–20 Beads-on-a-string (BOAS) is another potential flow pattern, which has been attracting attentions in microfluidics field. BOAS flow, owing to its special flow structures, may be particularly useful in some applications, such as optical-sensor fabrication.21 In BOAS flow, queues of droplets are connected by a series of liquid threads, which makes them look like a fluid necklace with regular periods.21–25 The BOAS pattern is easily found in nature, such as silk beads and cellular protoplasm, and is often encountered in industrial processes as well, such as in electrospinning and anti-misting.21,22 In general, it is thought that BOAS structure occurs mostly in viscoelastic fluids22 and is an unstable structure, which evolves continually and breaks eventually.21–29Flow patterns determine the inter-relations of fluids in a microdevice and are an important parameter to control. Common methods for adjusting microfluidic flow patterns include varying the fluid flow rates, fluid properties, and channel geometries. Additionally, the application of an electric field can be a useful supplement for adjusting microfluidic flow patterns, although most work in this area has been focused on droplets and in some cases also on multi-stream laminar flows.30–33 Here, in addition to forming droplets and two-phase laminar flow with electro-hydrodynamic actuation, we also observed a new stable flow pattern in a non-viscoelastic fluid, BOAS flow. Such flow patterns may find use in controlling the interactions between droplets, such as limited mixing by diffusion between neighboring droplets.To generate droplets, we used the flow-focusing geometry (Figure 1(a)), in which aqueous phase (water) was flown down the middle channel and droplets were pinched off by the oil phase (1-octanol) from the two side channels at the junction; Figure 1(b) shows the droplets formed after the junction. To apply electric field along the main channel where the droplets were formed, we patterned a pair of electrodes upstream and downstream of the junction (Figure 1(a); for experimental details, please see Ref. 34 for supplementary material). The average electric field strength may be calculated from the voltages applied and the distance (1.7 mm) between the two electrodes. When a high voltage was applied along the channel between the two electrodes, the aqueous-oil interface at the flow-focusing junction became charged and behaved like a capacitor. As a result, more negative charges were drawn back upstream towards the positive electrode, and left behind more positive charges at the aqueous-oil interface, which then became encapsulated into the aqueous droplets dispersed in the oil phase.Open in a separate windowFIG. 1.(a) Schematic of the setup. (b) Micrograph showing droplet generation in a flow-focusing junction. The scale bar represents 40 μm.The positively charged aqueous-oil interface was stretched under an applied electric field, and by adjusting the voltage and/or the two-phase flow-rate ratio, we found interestingly that various flow patterns emerged. We tested different combinations of applied voltages and flow-rate ratios and found that most of them resulted in similar flow patterns and transitions between flow patterns.Figure Figure22 illustrates the effects of varying the applied voltages on droplets at a fixed liquid flow rate. With increasing electric-field strength and force, we found it was easier for the aqueous phase to overcome interfacial tension and form droplets. For example, as the voltage increased from 0.0 kV to 0.8 kV (average field strength increased from 0 to 0.47 V/μm), droplet-generation frequencies became slightly higher, and the formed droplets were smaller in volume. Additionally, droplets gradually became more spherical in shape at higher voltages.Open in a separate windowFIG. 2.Images showing the effects of applied voltage on droplet shape and flow pattern. Oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.2 μl/min. The scale bar represents 40 μm.As the voltage increased further (e.g., up to 1.0 kV in Figure Figure3),3), the distance between neighboring droplets became smaller, and the aqueous-oil interface at the junction was stretched further toward the downstream channel. At a threshold voltage (1 kV here with corresponding average field strength of 0.59 V/μm), the tip of the aqueous-oil interface would catch up with the droplet that just formed, and the tip of the interface of this newly captured droplet would in turn catch up with the interface of the droplet that formed before it. Consequently, a series of threads would connect all the droplets flowing between the two electrodes, thus resulting in a BOAS flow pattern.Open in a separate windowFIG. 3.Series of images showing the reversibility and synchronicity of a transitional flow pattern between droplets and BOAS (bead-on-a-string). Voltage applied, 1.00 kV (corresponding field strength of 0.59 V/μm); oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.2 μl/min. The scale bar represents 40 μm.At voltages near the threshold value, the flow pattern was not stable, but oscillated between droplets flow and BOAS flow. Figure Figure33 is a series of images captured by a high-speed camera that show the flow in this transition region. In Figures 3(a) and 3(b), the string of BOAS became thinner over time, and then the BOAS broke into droplets (Figures 3(c) and 3(d)). The newly formed droplets, however, were not stable either. Thin liquid threads would appear and then connect neighboring droplets, and a new switching period between discrete droplets and BOAS would repeat (Figures 3(e)–3(h)). In addition to this oscillation and reversibility, the flow pattern had a synchronous behavior: all the droplets appeared connected simultaneously by liquid threads or were separated at the same time.When the voltage reached 1.3 kV, which corresponded to an average field strength of 0.76 V/μm, a stable BOAS flow was obtained (Figure 4(a)). BOAS structures are thought to be present mostly in viscoelastic fluids,22 because viscoelasticity is helpful in enhancing the growth of beads and in delaying breakup of the string; thus, the viscoelastic filament has much longer life time than its Newtonian counterpart. Here, with the help of electric field, regular BOAS structures are realized in a non-viscoelastic fluid (water) in microchannels.Open in a separate windowFIG. 4.(a) Micrograph showing BOAS flow in a channel. (b) Profile of the top-half of the BOAS flow recorded continuously at a cross-section (shown in Figure 4(a)) of a channel. Voltage applied, 1.30 kV (corresponding field strength of 0.76 V/μm); oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.2 μl/min. The scale bar represents 40 μm.Microenvironment and electric fields alter the common evolution of BOAS structure observed in macroscopic or unbound environments. The BOAS structure formed in our experiments is not a stationary pattern, but a steady-state flowing one. Electric-field force prevents liquid strings from breaking between beads, and thus plays a similar role as elastic force in viscoelastic fluids. Figure 4(b) shows the dynamic BOAS profile, obtained at a fixed plane (shown in Figure 4(a)) perpendicularly across the channel as the BOAS structure passed through it. Droplets and liquid-thread diameters were nearly constant during the sampling time. The longer term experiments (over 3 min) showed there were slight variations of the two diameters in time, but the essential BOAS structure still remained qualitatively the same as a whole.When the voltage was further increased, the string diameter became larger and the droplet diameter became smaller. Because of the low flow-rate ratio (0.4) between the aqueous phase and oil phase used in the experiment depicted in Figure Figure4,4, the flow did not further develop into a multi-stream laminar flow, as would be expected at a higher voltage, and instead became unstable and irregular. When the flow-rate ratio was increased to 1.0 and the voltage was adjusted to 3.0 kV (corresponding field strength of 1.76 V/μm), we observed a stable multi-stream laminar flow (Figure (Figure5).5). The aqueous stream flowed in the channel center surrounded by the oil phase on the sides. This experiment showed that higher electric-field strengths alone would not give rise to another stable flow pattern (i.e., multi-stream laminar flow), but a suitable flow-rate ratio of aqueous phase to oil phase is required for the formation of stable two-phase laminar flow.Open in a separate windowFIG. 5.Micrograph showing multi-stream two-phase laminar flow in the channel. Voltage applied, 3.00 kV (corresponding field strength of 1.76 V/μm); oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.5 μl/min. The scale bar represents 40 μm.The flow patterns we observed may be described by a phase diagram (Figure (Figure6),6), which depends on two dimensionless numbers: capillary number, Ca = μaUa/σ, and electric Bond number, Boe = E2(εD/σ). Ca and Boe describe the ratio of viscous force to interfacial tension force and the ratio of electric-field force to interfacial tension force, respectively. Here, μa (1 mPa s), σ (8.5 mN/m), ε (7.1 × 10−10 F/m), E, Ua, and D are, respectively, the aqueous-phase viscosity, aqueous-oil interfacial tension, aqueous-phase permittivity, electric field strength, aqueous-phase velocity, and the hydraulic diameter of the channel at the junction. Figure Figure66 shows clearly that at higher Ca, flow pattern changes gradually from droplet to BOAS and to multi-stream laminar flow with increasing Boe, which indicates the increasing importance of the electric-field force compared with the interfacial tension force. At lower Ca, flow pattern and transition show similar trend with increasing Boe as in the higher Ca case, except that multi-stream laminar flow is not observed. The relatively higher viscous force at higher Ca may be necessary for transitioning to the multi-stream laminar flow regime. In addition, Figure Figure66 shows that the BOAS window at the lower Ca is smaller than that at the higher Ca.Open in a separate windowFIG. 6.Phase diagram showing different flow patterns in the Ca and Boe space. Hollow symbols: oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.5 μl/min. Solid symbols: oil-phase flow rate, 0.5 μl/min; aqueous-phase flow rate, 0.2 μl/min.In summary, we showed the ability to use electric fields to generate and control different flow patterns in two-phase flow. With the aid of an applied field, we were able to generate BOAS flow patterns in a non-viscoelastic fluid, a pattern that typically requires a viscoelastic fluid. The BOAS structure was stable and remained as long as the applied electric field was on. We also report transitional flow patterns, those between droplets and BOAS exhibited both good reversibility as well as synchronicity. And with a suitable flow-rate ratio between the two phases, BOAS flow could be transitioned into a stable two-phase laminar flow by applying a sufficiently high field strength. Finally, a phase diagram was presented to describe quantitatively the flow-pattern regimes using capillary number and electric Bond number. The phenomena we report here on the properties of two-phase flow under an applied electric field may find use in developing a different approach to exert control over droplet based or multi-phase laminar-flow based operations and assays, and also aid in understanding the physics of multi-phase flow.  相似文献   

15.
Zebrafish is an emerging alternative model in behavioral and neurological studies for pharmaceutical applications. However, little is known regarding the effects of noise exposure on laboratory-grown zebrafish. Accordingly, this study commenced by exposing zebrafish embryos to loud background noise (≥200 Hz, 80 ± 10 dB) for five days in a microfluidic environment. The noise exposure was found to affect the larvae hatching rate, larvae length, and swimming performance. A microfluidic platform was then developed for the sorting/trapping of hatched zebrafish larvae using a non-invasive method based on light cues and acoustic actuation. The experimental results showed that the proposed method enabled zebrafish larvae to be transported and sorted into specific chambers of the microchannel network in the desired time frame. The proposed non-invasive trapping method thus has potentially profound applications in drug screening.  相似文献   

16.
Recent advances in microscale flow propulsion through bioinspired artificial cilia provide a promising alternative for lab-on-a-chip applications. However, the ability of actuating artificial cilia to achieve a time-dependent local flow control with high accuracy together with the elegance of full integration into the biocompatible microfluidic platforms remains remote. Driven by this motive, the current work has constructed a series of artificial cilia inside a microchannel to facilitate the time-dependent flow propulsion through artificial cilia actuation with high-speed (>40 Hz) circular beating behavior. The generated flow was quantified using micro-particle image velocimetry and particle tracking with instantaneous net flow velocity of up to 101 μm/s. Induced flow patterns caused by the tilted conical motion of artificial cilia constitutes efficient fluid propulsion at microscale. This flow phenomenon was further measured and illustrated by examining the induced flow behavior across the depth of the microchannel to provide a global view of the underlying flow propulsion mechanism. The presented analytic paradigms and substantial flow evidence present novel insights into the area of flow manipulation at microscale.  相似文献   

17.
Blood cell sorting is critical to sample preparation for both clinical diagnosis and therapeutic research. The spiral inertial microfluidic devices can achieve label-free, continuous separation of cell mixtures with high throughput and efficiency. The devices utilize hydrodynamic forces acting on cells within laminar flow, coupled with rotational Dean drag due to curvilinear microchannel geometry. Here, we report on optimized Archimedean spiral devices to achieve cell separation in less than 8 cm of downstream focusing length. These improved devices are small in size (<1 in.2), exhibit high separation efficiency (∼95%), and high throughput with rates up to 1 × 106 cells per minute. These device concepts offer a path towards possible development of a lab-on-chip for point-of-care blood analysis with high efficiency, low cost, and reduced analysis time.  相似文献   

18.
Quantifying the motility of micro-organisms is beneficial in understanding their biomechanical properties. This paper presents a simple image-based algorithm to derive the kinetic power and propulsive force of the nematode Caenorhabditis elegans. To avoid unnecessary disturbance, each worm was confined in an aqueous droplet of 0.5 μl. The droplet was sandwiched between two glass slides and sealed with mineral oil to prevent evaporation. For motion visualization, 3-μm fluorescent particles were dispersed in the droplet. Since the droplet formed an isolated environment, the fluid drag and energy loss due to wall frictions were associated with the worm''s kinetic power and propulsion. A microparticle image velocimetry system was used to acquire consecutive particle images for fluid analysis. The short-time interval (Δt < 20 ms) between images enabled quasi real-time measurements. A numerical simulation of the flow in a straight channel showed that the relative error of this algorithm was significantly mitigated as the image was divided into small interrogation windows. The time-averaged power and propulsive force of a N2 adult worm over three swimming cycles were estimated to be 5.2 ± 3.1 pW and 1.0 ± 0.8 nN, respectively. In addition, a mutant, KG532 [kin-2(ce179) X], and a wild-type (N2) worm in a viscous medium were investigated. Both cases showed an increase in the kinetic power as compared with the N2 worm in the nematode growth medium due to the hyperactive nature of the kin-2 mutant and the high viscosity medium used. Overall, the technique deals with less sophisticated calculations and is automation possible.  相似文献   

19.
Deterministic lateral displacement (DLD) is a microfluidic size-based particle separation or filter technology with applications in cell separation and enrichment. Currently, there are no cost-effective manufacturing methods for this promising microfluidic technology. In this fabrication paper, however, we develop a simple, yet robust protocol for thermoplastic DLD devices using regulatory-approved materials and biocompatible methods. The final standalone device allowed for volumetric flow rates of 660 μl min−1 while reducing the manufacturing time to <1 h. Optical profilometry and image analysis were employed to assess manufacturing accuracy and precision; the average replicated post height was 0.48% less than the average post height on the master mold and the average replicated array pitch was 1.1% less than the original design with replicated posts heights of 62.1 ± 5.1 μm (mean ± 6 standard deviations) and replicated array pitches of 35.6 ± 0.31 μm.  相似文献   

20.
In this study, a multiple sample dispenser for precisely metered fixed volumes was successfully designed, fabricated, and fully characterized on a plastic centrifugal lab-on-a-disk (LOD) for parallel biochemical single-end-point assays. The dispenser, namely, a centrifugal multiplexing fixed-volume dispenser (C-MUFID) was designed with microfluidic structures based on the theoretical modeling about a centrifugal circumferential filling flow. The designed LODs were fabricated with a polystyrene substrate through micromachining and they were thermally bonded with a flat substrate. Furthermore, six parallel metering and dispensing assays were conducted at the same fixed-volume (1.27 μl) with a relative variation of ±0.02 μl. Moreover, the samples were metered and dispensed at different sub-volumes. To visualize the metering and dispensing performances, the C-MUFID was integrated with a serpentine micromixer during parallel centrifugal mixing tests. Parallel biochemical single-end-point assays were successfully conducted on the developed LOD using a standard serum with albumin, glucose, and total protein reagents. The developed LOD could be widely applied to various biochemical single-end-point assays which require different volume ratios of the sample and reagent by controlling the design of the C-MUFID. The proposed LOD is feasible for point-of-care diagnostics because of its mass-producible structures, reliable metering/dispensing performance, and parallel biochemical single-end-point assays, which can identify numerous biochemical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号