首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
例1如图1,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD,过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连结EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.解析:命题者把等腰直角三角形与钝角三角形有机地组成一个梯形,令等腰直角三角形的斜边为梯形的下底,钝角三角形的最小边为  相似文献   

2.
大家都知道以下的定理直角三角形斜边上的中线等于斜边的一半.它的内涵很简单.但应用却比较丰富,下面说说怎么用.1.条件具备,直接应用例1如图1.在△ABC中.BE⊥AC于E.CF⊥AB于F.D为BC中点.求证:DE=DF.分析DE、CF分别是直角△BCE和直角△BCF的公共斜  相似文献   

3.
三角形面积公式S△=21ah是同学们熟知的,由于同学们对它理解不深,觉得它的用处不大.如果在理解它的基础上,将它的一些性质与平面几何的有关知识“串联”起来解决几何问题,就显得简捷巧妙,省时省力.举例应用如下:例1已知,如图1,在△ABC中,DE∥BC,AF为BC边上的中线,且交DE于G.求证:DG=EG.图1分析点F为中点,易知S△ABF=S△ACF,DE∥BC,连结DF,EF,则S△ADF=S△AEF,联想到作高.证明连结DF,EF,分别过D,E作DN⊥AF,EM⊥AF.因为AF为BC上的中点,所以S△AFB=S△AFC.因为DE∥BC,所以S△DFB=S△EFC.所以S△AFD=S△AFE…  相似文献   

4.
直角三角形有一个非常重要的性质,这就是:直角三角形中斜边上的中线等于斜边的一半.在解题中它起到传递线段之间关系的作用.如果在已知图形中出现直角三角形时,则可作出该直角三角形斜边上的中线,从而有利于问题的解决.例1已知:如图亚,rtABC中,BE上AC于E,CF上AB于广,M是BC的中点,N是EF的中点,连结A&V.求证:MN-I-EF.分析由已知条件可得凸BFC与凸BEC都是直角三角形,肥为其公共边.若连结MF、ME,可证FM二EM,因此结论易证.证明连结FM、E3I.的中线垂直于底边,…MN上EF.例2已知:如图人在OABCD中…  相似文献   

5.
素材如图1,D是△ABC中AB边上的中点,△ACE和△BCF分别是以AC、BC为斜边的等腰直角三角形,连结DE、DF.求证:DE=DF.DE⊥DF.  相似文献   

6.
“直角三角形斜边上的中线等于斜边的一半”,这条定理反映了直角三角形中重要的数量特征.在某些几何证题中,如能巧妙地运用这一数量关系,常可寻求到解题的捷径.下面举例说明. 例1 如图1,已知△ABC中,BD、CE分别是AC和AB边上的高.F、G分别是BC和DE的中点.求证:FG⊥ED.  相似文献   

7.
1.如图1,△ABC中,AB≠AC,△ADB与△AEC都是等边三角形(三边相等、三内角相等).那么,CD与BE是否相等?为什么?图1图22.已知,如图2,△ABC中,BD⊥AC于D,CE⊥AB于E,他们相交于点F,且BF=AC.在CE的延长线上取点G,使CG=AB.连接AF,AG.试说明AF⊥AG.3.已知,如图3,AD∥BC,DE∥BF,点E,F在AC上,AF=CE.你能说明AB与DC的位置关系吗?图3图4图54.已知,如图4,CF是正方形ABCD外角∠DCG的平分线,E是BC边上的一点,且AE⊥EF.你能说明AE与EF相等吗?(提示:正方形的四条边相等.设法找到分别以AE,EF为一边的两个三角形,并说明他…  相似文献   

8.
引理设Rt△ABC中,∠C=90°,CD是斜边上的高;过B点作BE⊥AB,BE=BC,连结AE,过E点作EF⊥AE交AB的延长线于F,则DB=BF.  相似文献   

9.
1998年全国初中数学竞赛中有这样一道解答题: 如图1,在等腰直角三角形ABC中,AB=1,∠A=90°,点E为腰AC的中点,点F在底边BC上,且EF⊥BE,求△CEF的面积。  相似文献   

10.
引理 设Rt△ABC中 ,∠C =90° ,CD是斜边上的高 ;过B点作BE ⊥AB ,BE =BC ,连结AE ,过E点作EF ⊥AE交AB的延长线于F ,则DB =BF .证明 在Rt△ABC中 ,BC2 =AB·BD ,Rt△AEF中 ,BE2 =AB·BF ,因为BE=BC ,所以DB=BF .这个引理表明 :在两个直角三角形中 ,若第二个直角三角形的一条直角边在斜边上的射影与高分别等于第一个直角三角形的斜边与一条直角边 ,那么 ,其另一直角边在斜边上的射影等于与高相等的直角边的射影 .本文将用几何方法证明如下的代数不等式 :若x>y >0 ,则y <2xyx y 相似文献   

11.
1.设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证BC⊥BD,且BC=BD。 分析:根据题目要求,画出图形如图1。欲证BC⊥BD且BC=BD,只需证△PCB≌△PDB,这是因为△ACB为等腰直角三角形,故∠ABC=45°,而此时∠DBP=45°.这样∠DBC=45° 45°=90°故BC⊥BD.而BC=BD是显然的。以下给出证明。  相似文献   

12.
1993年安徽省和1985年成都市都选用了一道中考试题:如图1,已知在△ABC中,∠BAC=90°,AD⊥BC,E是AC的中点,ED交AB的延长线于F.求证:(AB)/(AC)=(DF)/(AF).  相似文献   

13.
例1如图1,在△ABC中,AB>AC,AD是BC边上的中线.求证:∠BAD<∠CAD.图1分析注意到AD是BC边上的中线,中线加倍是常见的添辅助线的方法.然后把研究对象集中在△ABE中,由大边对大角,将问题得以解决.证明延长AD到点E,使DE=AD,连结BE,则D是△ADC与△EDB的对称中心,BE=CA,∠E=∠CAD.∵AB>AC,∴AB>BE,∴∠BAD<∠E,从而∠BAD<∠CAD.例2如图2,在△ABC中,D是BC边的中点,ED⊥DF,EF分别交AB、AC于E、F两点.求证:BE+FC>FE.图2分析能否将BE、FC、EF移到同一三角形考察线段不等关系?利用对称性作图是可以实施的,于是问…  相似文献   

14.
三角形中位线定理是一个重要定理.其应用极为广泛.本文结合实例介绍其应用. 例1 如图1,D是△ABC的边BC的中点,E、F是AC边上的两点,且AB=CE,AF=EF,DF的延长线交BA的延长线于G.求证:AF=AG. 分析由D、F分别是BC、AE的中点联想到三角形的中位线定理,为此可连结  相似文献   

15.
中点是图形中的特殊点 ,中线、中位线是三角形和梯形中的特殊线段。在解题时 ,如能运用相关性质 ,巧添辅助线 ,可使许多问题得到迅速解决。一、直接利用中点定义和中线的性质例 1 已知 :如图 1,△ ABC中 ,BD和 CE是高 ,M为 BC中点 ,P为 DE中点。求证 :PM⊥ DE。略证 :EM、DM分别为 Rt△ EBC和 Rt△ DBC斜边上的中线 ,故 EM=DM=12 BC。又因 PM为等腰△ MDE底边上的中线 ,故 PM⊥ DE。二、利用中点 ,构造中位线例 2 已知 :如图 2 ,△ ABC中 ,AD是高 ,BE是中线 ,且∠ EBC=30°。求证 :AD=BE。略证 :取 CD的中点 F,…  相似文献   

16.
中线、中位线是几何中两个很重要的概念,在很多问题中,若已知条件有中点,则常构造中位线,利用中位线将条件集中;若条件中有直角三角形,则常构造斜边的中线,利用斜边的中线等于斜边的一半解题。在很多竞赛题中有时将两者联用,使问题得以迅速解决,举例说明如下: 例1 如图1,在△ABC中,∠B=2∠C,AD⊥BC,垂足为D,M是BC的中点,AB=10厘米,求MD的长。(第七届“希望杯”初二试题)。  相似文献   

17.
<正>素材如图1,D是△ABC中AB边上的中点,ACE和BCF分别是以AC、BC为斜边的等腰直角三角形,连结DE、DF.求证:DE=DF,DE⊥DF.A B FC D E图1%解析本题是初中数学中的一道典型题目,证明的方法也很多,这里只展示其中的一种方法:  相似文献   

18.
用三角形的面积公式S△A BC=12aha=21bhb=21chc,证明几何题,过程简捷,思路清晰,方法奇妙独特,对解决问题有事半功倍的效果。现略举几例供同学们参考。一、证线段相等例1已知梯形ABCD中,AB‖BC、M在CD上,且S△A B M=21S梯形A BCD,求证:M为CD的中点。分析:由图1,若过D、M分别作DE‖MF‖AB交BC于点E、F,要证M为CD的中点,只需证EF=FC,也就是证S△AEF=S△DCF即可。证明:如图1,过D、M分别作DE‖MF‖AB交于BC于点E、F,连结AE、AF、DF,则S△AB M=S△ABF(等底等高等面积)图1又S△AB M=12S梯形ABCD∴S△ABF=12S…  相似文献   

19.
每期一题     
题如图,已知正方形ABCD,E是BC的中点,过E点作EF,使EF⊥AE且交∠C的外角的平分线于F,求证AE=EF。证法一 (利用四点共圆)如图,连结AC、AF, ∵∠ACF=∠ACD ∠DCF=45° 45°=90°, ∴ E和C在以AF为直径的圆上, ∠AFE=∠ACE=45°∠EAF=90°-∠AFE =90°-45°=45°故AE=EF。  相似文献   

20.
在证明题中,常会出现二倍角问题,此类问题往往有一定难度,需要认真分析已知与结论之间的联系,添加适当的辅助线,从而化难为易.现举例说明. 一、作倍角的平分线例1 已知:如图1,在△ABC中,∠B=2∠A,AB=2BC.求证:△ABC是直角三角形. 证明:作∠ABC的平分线BD交AC于点D,取AB的中点E,连结DE. ∵∠ABC=2∠A,∠ABC=2∠1=2∠2,∴∠A=∠1=∠2.即△ABD为等腰三角形.∵E为AB边中点,∴DE⊥AB.∵BE=12AB=BC,∠1=∠2,BD=BD,∴△BDE≌△BDC.∴∠BCD=∠BED=90°.即△ABC为直角三角形.二、构造倍角的等角…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号