首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
母子相似形的妙用浙江省宁波市芦渎中学吴丽丽浙江省宁波市柴桥中学尹洪生直角三角形斜边上的高分原直角三角形为两个小直角,这两个小直角三角形都和原直角三角形相似,这种基本图形通常形象地叫做母子相似形.一母生二子,二子皆似母.我们重视这种基本图形,首先是因为...  相似文献   

2.
比例线段的证明在相似形一章中占有重要的位置 ,是否灵活掌握 ,直接影响到后继课程“有关圆的比例线段”的学习 ,所以我们应给以足够的重视 .下面介绍一些常用的作法以供参考 .1 “三点定形法”找出相似三角形找出比例式中 (乘积线段可先化成比例线段 ) ,四条线段所在的两个相似三角形 ,利用相似三角形的性质 (对应边成比例 )得出比例式 .例 1 如图 1 ,己知D是△ABC的边AC上的一点 ,∠ 1 =∠C .求证 :(1 )AB·BD =AD·BC .(2 )AB2 =AC·AD .分析  (1 )要证AB·BD =AD·BC ,即证 ABAD =BCBD,只须证明两比前项 (分子 )两条…  相似文献   

3.
一、本章导析本章重点是四边形 ,难点是相似形 .近年来四边形的大题越来越多 ,但难度不大 ,相似形一般不出大题(其内容一般放在圆中考 ) ,以相似形性质为主 .二、例题解析例 1 如果两个等腰直角三角形斜边的比是 1∶2 ,那么它们面积的比是 (   ) .A.1∶ 1  B.1∶ 2  C.1∶ 2 D.1∶ 4分析 :首先我们要知道两个等腰直角三角形是相似的 ,其次不要把关于相似形面积的性质用反 .解 :∵相似形面积的比等于相似比的平方 ,∴所求面积的比是 1∶ 4 ,选 D.例 2 如图 1- 5- 1,等腰梯形 ABCD中 ,AD∥BC,∠ B=4 5°,AE⊥ BC于点 E,AE=A …  相似文献   

4.
成果集锦     
直角三角形的一个充要条件黑龙江省绥化市北林区五中 王 航  定理 在△ABC中,CD平分∠C ,则∠C =90°的充要条件是1AD2 1BD2 =2CD2 .①证明:如图,作BE∥AC ,AF∥BC ,分别交CD的延长线于点E、F ,则有CDDE =ADDB =DFCD .若∠C =90°,则∠CBE =∠CAF =∠C =90°,∠BCE =∠ACF =45°,BC =BE ;AC =AF ,于是由DF =ADDB·CD知2AC2 =AC2 AF2 =CF2 =(CD ADDB·CD) 2 ,类似得 2BC2 =(CD DBAD·CD) 2 .以上两式相加,注意到AC2 BC2 =AB2 ,AD DB =AB ,即得2AB2 =CD2 ·AB2 ( 1AD2 1BD2 ) ,即…  相似文献   

5.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

6.
下面是课本226页的例2:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.已知:如图1,Rt△ABC中,CD是斜边上的高.求证根据此例题的结论,由相似三角形的性质可得如下结论:在Rt△ABc中,若CD是斜边上的高,则有:(1)CD2=AD·BD;这个结论有较广泛的应用,同学们如果能够较好地掌握,将有助于提高解决直角三角形中有关计算和证题的能力.例1如图回,在Rt△ABC中,CD是斜边上的高,AC=b,BC=a.求AD:BD.分析观察结论。,(2)中有AD、BD、AC2、BC2,将(2)中两个式子左右相比,可得解△ABC为直角三…  相似文献   

7.
原命题:△ABC中,CD是边AB上的高,若∠ACB=90°,则CD~2=AD·BD。(如图1)  相似文献   

8.
“梯形”练习题中有这样一个问题:已知等腰梯形ABCD,AD//BC,对角AC⊥BD,AD=3cm,BC=7cm,求梯形的面积S.参考书中通常介绍如下三种作辅助线的方法(如图1).然而不作辅助线,是否也能求解呢?答案是肯定的.解法如下:如图2,因为ABCD是等腰梯形,所以AB=DC,∠ABC=∠DCB,又知BC=BC,所以△ABC≌△DCB(SAS),所以∠1=∠2,AC=BD,而AC⊥BD,所以∠1=∠2=45°,故△BOC等腰直角三角形.同理可知△AOD也为等腰直角三角形.由勾股定理得OA=OD=姨22AD=23姨2cm.OB=OC=姨22BC=7姨22cm.所以AC=OA OC=5姨2cm.于是S梯形ABCD=S△ABC S…  相似文献   

9.
勾股定理描述了直角三角形三条边长之间的关系 .解题中 ,当涉及求直角三角形边长时 ,可将要求的边长设为未知量 ,然后借助于勾股定理得到它满足的方程 ,进而求解 .因此 ,方程思想在勾股定理的应用中非常广泛 . 例 1 已知△ABC的 3条边长分别为 1 3 ,1 4 ,1 5,求这个三角形的面积 .图 1分析 要求△ABC的面积 ,需要知道它的底边长和高 .由勾股定理的逆定理知 ,△ABC不是直角三角形 .首先作BC边上的高AD .由于图中出现了两个直角三角形 ,要求它们的直角边AD之长 ,可根据勾股定理列方程求解 .解 作BC边上的高AD ,设 AD =h ,BD =x …  相似文献   

10.
相似形的问题 ,解法具有一般性 ,结论具有广泛的应用价值 ,一些中考及竞赛常常是这些问题经过变更、拓广、延伸、演变而成的。熟悉这些问题的解法、结论 ,对解题具有极大的帮助。下面我们就来简单谈谈相似形的判定及其应用。一、相似三角形的判定定理1 有两角对应相等 ;2 三边对应成比例 ;3 有一角相等 ,且夹这等角的两边对应成比例 ;4 有一个锐角对应相等的直角三角形 ;5 一条直角边与斜边对应成比例的两个直角三角形 ;6 平行于三角形一边的直线所截的三角形与原三角形相似 ;7 直角三角形中 ,斜边的高所截出的两个直角三角形均与原三角…  相似文献   

11.
勾股定理是几何中十分重要的定理,它揭示了直角三角形三条边之间的数量关系,是直角三角形特有的性质.勾股定理的逆定理以三角形三边之间的数量关系来判断直角三角形的定理.它把数与图形统一起来,体现了数学的重要思想——数形结合思想.现就其具体应用解析如下:一、综合应用勾股定理与方程的有关知识例1如图1,将矩形ABCD(AB相似文献   

12.
例1如图1,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD,过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连结EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.解析:命题者把等腰直角三角形与钝角三角形有机地组成一个梯形,令等腰直角三角形的斜边为梯形的下底,钝角三角形的最小边为  相似文献   

13.
原题 设D是锐角△ABC内部的一个点,使得 ∠ADB=∠ACB 90°,并有 AC·BD=AD·BC。 (1)计算比值 AB·CD/AC·BD。 (2)求证△ACD的外接圆和△BCD的外接圆在C点的切线互相垂直。 这是一道难度较大的几何题,求比值AB·CD/AC·BD的关键是寻找角度与线段之间的关系。 下面介绍一种简捷的解答方法,并对原题进行  相似文献   

14.
1.证明线段成比例 例1 在△ABC中,∠BAC=90°,AD⊥C,∠ABC的平分线交AD于F,交AC于E,求证:DF:FA=AE:EC.(初中《几何》第二册总复习题18题)。 思路:如图1,由本题结论特点,可寻找第三个比:分别在△ABD和△ABC中应用三角形内角平分线定理,得DF/FA=BD/AB和AE/EC=AB/BC.如果BD/AB与AB/BC相等,问题即解决。由直角三角形比例中项定理可得AB~2=BD×BC,即BD/AB=AB/BC.  相似文献   

15.
初21.如图,设D是锐角△ABC内部一点,使得∠ADB-∠ACB=α,并有AC·BD=AD·BC。求证: (AB·CD)/(AC·BD)=2sinα/2。  相似文献   

16.
托勒密定理是联系四边形和圆的一个重要定理。它是这样叙述的,圆内接四边形ABCD的两组对边乘积之和等于两对角线乘积。即: AC·BD=AB·CD AD·BC 通常证法是设法将①式左边分为两项,使与右边两项对应相等。 设在AC上取一点P,使AC=AP PC,代入①式左边得:AC·BD=AP·BD PC·BD.  相似文献   

17.
<正>一、三角形相似的基本图形1."母子"相似三角形直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似,这种图形中的3个三角形相似,称为"母子"相似。如图1,CD为Rt△ABC中  相似文献   

18.
<正>一、课堂实录1.回顾旧知,引入课题师:我们已知知道,等腰直角三角形△ABC中,如果AD是斜边BC的高线(如图1),那么AD=BD=CD,也可以说斜边上的中线AD是斜边BC长的一半.  相似文献   

19.
<正>等腰三角形具有"三线合一"的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.如图1,在△ABC中,AB=AC,D是BC上一点.(1)如果∠1=∠2,那么AD⊥BC,BD=CD;(2)如果BD=CD,那么∠1=∠2,AD⊥BC;(3)如果AD⊥BC,那么∠1=∠2,BD=CD.上述性质中,共存在4个关系式:AB=AC,∠1=∠2,AD⊥BC,BD=CD.而改写后的每条性质都有两个条件,且都有一个条件是"AB=AC".反过来,在关系式∠1=∠2,AD⊥BC,  相似文献   

20.
本文给出圆中具有公共端点的三条弦及其夹角之间的一个数量关系,并举例说明其应用。 定理 若AB,AC,AD是⊙O的三条弦,∠BAC=α,∠CAD=β则AB·sinβ AD·sinα=AC·sin(α β) 证明 设⊙O的半径为R,连结BC,BD,CD,则由正弦定理,得:BC=2R·sinα,CD=2R·sinβ,BD=2R·sin(α β)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号