首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
若f是非空集合A到非空集合B的一个单值对应,即对任意a∈A,按照对应法则f,有唯一的b∈B与之对应,则称这个对应f为A到B的一个映射,记作b=f(a),又记f(A)={f(a)|a∈A},则一般有f(A)(?)B。特别地,若f(A)=B,则称映射为满射。若f(A)=B,且当a_1≠a_2时,有f(a_1)≠f(a_2)那么称映射f为A到B的一一映射。这时f有一个逆映射f~(-1),满足对任意a∈A,有f~(-1)(f(a))=a,对任意b∈B有f(f~(-1)(b))=b。  相似文献   

2.
求最大(小)值中的最小(大)值问题,即形如求f=(x)=max{a_1(x),a_2(x),…, x∈Ia_n(x)}的最小值, 求f(x)=min(a_1(x), a_2(x),…, x∈Ia_m(x)}的最大值, 求f(x)=maxF(Y,x)的最小值, Y∈D 求f(x)=minF(y,x)的最大值  相似文献   

3.
<正>近几年高考,函数中双变量的任意与存在混搭的等式问题,越来越受命题人的青睐.对于这类问题,学生很是困惑.下面就此类问题总结归纳如下:命题1x_1∈A,?x_2∈B,使得f(x_1)=g(x_2)成立f(x)的值域包含于g(x)的值域 {f(x)|x∈A}∈{g(x)|x∈B}.命题2x_1∈A,x_2∈B,都有f(x1)=g(x2)成  相似文献   

4.
<正>近几年高考,函数中双变量的任意与存在混搭的等式问题,越来越受命题人的青睐.对于这类问题,学生很是困惑.下面就此类问题总结归纳如下:命题1x_1∈A,■x_2∈B,使得f(x_1)=g(x_2)成立{f(x)|x∈A}的值域含于g(x)的值域{f(x)|x∈A}■{g(x)|x∈B}.命题2x_1∈A,x_2∈B,都有f(x_1)  相似文献   

5.
大家知道 ,一个函数是否具有反函数 ,关键在于判断确定此函数的映射是否为从定义域A到值域B上的一一映射 .一一映射必须满足两点 :A中不同的元素在B中都有不同的象 ,即x1 ≠x2 y1 ≠ y2 ;B中每一个元素 (一个不漏地 )在A中都有原象 ,即 y∈B , x∈A ,使 y=f(x) .只有满足这两点的映射才是一一映射 ,从而由此映射所确定的函数才具有反函数 .一、分段函数具有反函数的判定分段函数也是函数 ,因此它是否具有反函数 ,必须看确定分段函数的映射是否是一一映射 .例 1 判断函数f(x) =x2 -3 (x≥ 0 ) ,3x(x <0 )是否具有反函数 .解 分段函数…  相似文献   

6.
设f(x)=a_x,x∈1[1,+∞],且f(1)=m,(m∈R), f(x+1)=qf(x)+p(x)显然,当x=n(n∈N)时,有f(n+1)=qf(n)+p(n)或a_(n+1)=q_n~a+p(n),当x=1时有f(2)=qf(1)+p(1)=qm+p(1),对(1)式两端关于x求导,可得  相似文献   

7.
设 f(x)=ax2+ bx+ c(a≠ 0)时,当 x∈〔 s,t〕时,若 f(x)的值域也是〔 s,t〕,则称 f(x)为〔 s, t〕到自身上的二次映射。试问,任给一二次函数 f(x),在何时 f(x)可以把〔 s, t〕映射到它自身上 ?这样的〔 s,t〕有多少个 ?反之,任给〔 s,t〕,如何找到一个二次函数 f(x),使之成为〔 s,t〕到自身上的二次映射 ?符合要求的二次函数有多少 ?本文就以上问题做简要讨论。 命题 1:设 f(x)=ax2+ bx+ c(不妨设 a>0),f(x)把〔 s, t〕映射到它自身上的必要条件是: (b- 1)2- 4ac>0。 证明:若 f(x)把〔 s,t〕映射到自身上: 单调递增…  相似文献   

8.
运用运动和变化的观点分析和研究具体问题的数量关系,通过函数的形式,把这种关系表示出来并加以研究,从而使问题获得解决,这种思想方法,叫做函数思想法。纵观近几年的高考试题,笔者发现有许多命题与函数思想法有着较为密切的联系。下面举例说明。 例1 已知(1-2x)~7=a_0 a_1x …a_7x~7,那么a_1 a_2 … a_7= (1989年试题) 解:没函数f(x)=(1-2x)~7,则f(x)=a_0 a_1x … a_7x~7,又f(1)=a_0 a_1 a_2 … a_7=-1,f(0)=a_0=1, ∴a_1 a_2 …a_7=f(1)-f(0)=-2. 例2 解不等式.(1985年试题) 解:设函数,则此函数的定  相似文献   

9.
设X是有限集,用|X|表示X的元素的个数,在不同领域中都会遇到对有限集X的计数问题,不要以为这是轻而易举可以解决的问题,有许多计数问题是相当艰难的,解决它需要知识,更需要智能,解计数问题更多地是依靠机智,依靠对特殊问题的具体分析,在方法上是灵活多样的。计数问题是组合数学的重要组成部分,也是数学竞赛中经常出现的热门试题,本文简要介绍组合计数的一些重要方法。一、映射与计数有两个集合X和Y,如果对每一x∈X有一个y∈Y与之对应,则说定义了一个从X到Y的映射f:X→Y。如果由x_1≠x_2可推出f(x_1)≠(x_2),则称映射f为单射。如果{f(x)|x∈X}=Y,则称映射f为满射。若映射f既是单又是满,就说f是一一映射。  相似文献   

10.
贺斌 《数学教学》2006,(9):16-17,5
如下两道题曾作为数学奥林匹克高中训练题出现:题1设集合A={1,2,3,4,5,6},映射f: A→B满足f(f(x))=x,则映射f的个数为____.题2已知集合S={1,2,3,4,5,6},一一映射f:S→S满足条件:对于任意的x∈S,  相似文献   

11.
一、选择题1.设f:x→y=2x是A→B的映射,已知集合B={0,1,2,3,4},则A满足().A.A={1,2,4,8,16}B.A={0,1,2,log23}C.A{0,1,2,log23}D.不存在满足条件的集合2.已知函数f(x)=log2x(x>0),3x(x≤0),则f f41的值是().A.9B.91C.-9D.-913.设有两个命题:①关于x的不等式x2+2ax+4>0对于一切x∈R恒成立;②函数f(x)=-(5-2a)x是减函数.若上述两个命题有且只有一个为真命题,则实数a的取值范围是().A.(-2,2)B.(-∞,2)C.(-∞,-2)D.(-∞,-2]4.若f(x)=xx-1,则方程f(4x)=x的根是().A.21B.-21C.2D.-25.若定义在区间(-1,0)内的函数f(x)=log2a(x+1),满足f(x…  相似文献   

12.
高中数学竞赛中有些命题可转化为周期问题,关键是如何发现和巧妙地运用周期性.现分类归纳如下,供同学们参考. 例1 已知f(x)是定义在R上的函数,f(1)=1且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,求  相似文献   

13.
文[1]在F=Q上讨论了f(x)与f(xm)的Galois群的阶的问题。本文我们就f=Q(ξ),A∈Mn(F),f(x)是分圆域Q(ξ)上矩阵A的n次不可约特征多项式,g(x)=xm-a∈F(x),以f(x)与f(g(x))的Galois群的阶来进一步讨论g(X)=A有解的一个条件。  相似文献   

14.
题目:设f是一个从实数集R映射到自身的函数,且对任何x∈R都有|f(x)|≤1,及f(x 13/42) f(x)=f(x 1/6) f(x 1/7).  相似文献   

15.
配对原理:设A,B是有限集, (1)若映射f是A到B'B的一一映射,则|A|≤|B|。 (2)若映射f是A'A到B的一一映射,则|A|≥|B|。 (3)若映射f是A到B的一一映射,则|A|=|B|. 在解决一些数学问题时,配对原理具有较高的  相似文献   

16.
多项式理论是代数学的一个重要组成部分,有关多项式方面的问题常常被用作数学竞赛的试题.本文仅就数学竞赛中求解满足某些条件的多项式归纳几种方法介绍如下.1.从分析根的情况入手设n∈N,a_0,a_1,…,a_n∈C(或R,或Z)且a_n≠0,称f(x)=a_nx~n a_(n-1)x~(n-1) … a_0(1)为复(或实、或整)系数一元n次多项式.多项式的次数常记为degf(x)=n.单独的一个非零常数,叫做零次多项式;系数a_0,a_1,…,a_n全为零的多项式叫做零多项式.若数x_0满足f(x_0)=0,则称x_0为多项式f(x)的根.由代数基本定理:复系数一元n次多项式f(x)有…  相似文献   

17.
命题1 函数f(x)=Asin(wx+φ)(A>0,w>0,x∈R)为奇函数的充要条件是证明因为f(x)为奇函数所以f(x)+f(-x)=0  相似文献   

18.
解函数综合题时,经常能遇到含参数不等式恒成立问题,处理这样的问题对解题能力的要求比较高,本文介绍几种处理恒成立问题的几种主要方法.一、特殊值法若函数f(x)>0(或f(x)<0)对x∈A恒成立,则对特定的x0∈A,有f(x0)>0(或f(x0)<0)【例1】已知f(x)是定义在R上的函数,对于任意的m,n∈R,恒有f(m n)=f(m) f(n),当x>0时f(x)<0恒成立,且f(1)=-2.(1)判断f(x)的奇偶性和单调性;(2)求f(x)在[-3,3]上的值域.解:(1)在f(m n)=f(m) f(n)中,令n=-m得f(0)=f(m) f(-m),在此式中令m=0得:f(0)=f(0) f(0)则f(0)=0∴f(m) f(-m)=0即f(-m)=-f(m),对一切m∈R恒成立.…  相似文献   

19.
<正>在广东省惠州市第一中学的一次期末考试中有一道这样的试题:例设函数f(x)=x2-|x-a|,x∈R,a∈R。(1)若f(x)为偶函数,求实数a的值;(2)已知a≥0,若对任意x∈R都有f(x)≥-1恒成立,求实数a的取值范围。命题人给出的答案是这样的:解法1:(1)若f(x)为偶函数,则f(-x)=f(x),f(x)=x2-|x-a|,x∈R,a∈R。(1)若f(x)为偶函数,求实数a的值;(2)已知a≥0,若对任意x∈R都有f(x)≥-1恒成立,求实数a的取值范围。命题人给出的答案是这样的:解法1:(1)若f(x)为偶函数,则f(-x)=f(x),f(x)=x2-|x-a|,f(-x)=(-x)2-|x-a|,f(-x)=(-x)2-|-x-a|=x2-|-x-a|=x2-|x+  相似文献   

20.
美国第10届大学生数学竞赛题中有一道是: 一条笔直的大街上有几座房子,每座房子里有小孩若干,问他们在什么地方相会,所走路程之和为最小? 我们设共有n座房子,每座房子里分别有a_1,a_2,…,a_n个小孩,现置大街于数轴上,并设相会点及每座房子分别对应数x,b_1,b_2,…,b,则孩子们到相会点的路程之和为 f(x)=∑a_1|x-b_1|,这里a_1∈N,b_1∈R且i≠j时b_i≠b_j。这样,原问题就转化为求x的值,使f(x)最小本文拟探讨a_1∈R时f(x)的最值情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号