首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Providing prompts to induce focused processing of the central contents of instructional explanations is a promising instructional means to support novice learners in learning from instructional explanations. However, within research on the expertise reversal effect it has been shown that instructional means that are beneficial for novices can be detrimental for learners with more expertise if the instructional means provide guidance that overlaps with the internal guidance provided by the prior knowledge of learners with more expertise. Under such circumstances, prompts to induce focused processing might even be detrimental for learners with expertise whose prior knowledge already provides internal guidance to learn from explanations. On this basis, we aimed at experimentally varying expertise by developing prior knowledge. Specifically, we used a preparation intervention with contrasting cases to enhance learners’ prior knowledge (expertise). Against this background, we tested 71 university students in a 2 × 2 factorial experimental design: (a) Factor of expertise. Working with contrasting cases to develop prior knowledge and expertise to provide internal guidance to learn from instructional explanations (with vs. without), (b) Factor of prompts. Prompts to induce focused processing of the explanations (with vs. without). The results showed that prompts to induce focused processing fostered conceptual knowledge for novice learners whereas prompts hindered the acquisition of conceptual knowledge for learners with expertise that was developed by working with contrasting cases beforehand. Moreover, measures of subjective cognitive load and learning processes suggest that the instructional guidance provided by prompts compensated for the low internal guidance of novice learners and overlapped with the internal guidance of learners with expertise.  相似文献   

2.
The interactions between levels of learner prior knowledge and effectiveness of different instructional techniques and procedures have been intensively investigated within a cognitive load framework since mid-90s. This line of research has become known as the expertise reversal effect. Apart from their cognitive load theory-based prediction and explanation, patterns of empirical findings on the effect fit well those in studies of Aptitude Treatment Interactions (ATI) that were originally initiated in mid-60s. This paper reviews recent empirical findings associated with the expertise reversal effect, their interpretation within cognitive load theory, relations to ATI studies, implications for the design of learner-tailored instructional systems, and some recent experimental attempts of implementing these findings into realistic adaptive learning environments.  相似文献   

3.
The eye-tracking technology was used in this study to investigate the effects of embedded questions and feedback in instructional videos on learning performance and attention allocation and whether an expertise reversal effect existed. The experiment involved 49 learners with high-level prior knowledge and 45 ones with low-level prior knowledge from a university. Meanwhile, they learned instructional videos with no embedded feedback, embedded questions without feedback and embedded questions with feedback. Findings from the experiment showed that the instructional videos with embedded questions but without feedback not only improved the participants’ attention but also enhanced their learning performance. Furthermore, there was an expertise reversal effect on the learning performance whereby instructional videos with embedded questions but without feedback improved the learning performance of learners with low-level prior knowledge, but not those with high-level prior knowledge.  相似文献   

4.
This study examined the effectiveness of a computer-based environment employing three example-based instructional procedures (example–problem, problem–example, and fading) to teach series and parallel electrical circuit analysis to learners classified by two levels of prior knowledge (low and high). Although no differences between the instructional procedures were observed, low prior knowledge learners benefited most from traditional example–problem pairs while their high prior knowledge counterparts benefited most from problem–example pairs. Overall, this study provides empirical support for the expertise reversal effect, which suggests that the effectiveness of certain instruction procedures in example-based learning environments depends upon the learners' level of prior knowledge.  相似文献   

5.
The reported study compared the instructional effectiveness of Modern English explanatory interpretations of Shakespearean play extracts integrated line by line into original Elizabethan English text, with a conventional unguided original text condition. Experiment 1 demonstrated that the explanatory notes group reported a lower cognitive load and performed better in a comprehension test than the control group when students had no prior knowledge of the text. In Experiment 2, a reverse effect occurred when the same material was presented to a group of Shakespearean experts. Experiment 3 replicated the results of Experiment 1 using a different Shakespearean play. The study demonstrated that the relative effectiveness of instructional conditions depended on learner levels of expertise. In accordance with the expertise reversal effect, the benefits of guided instruction reversed and became detrimental for learners with high prior knowledge levels. Retrospective verbal protocols indicated that the explanations were redundant for expert readers.  相似文献   

6.
《Learning and Instruction》2003,13(2):227-237
Multimedia learning environments combine multiple forms of representations like texts, static and animated pictures or graphs. Knowledge acquisition from multiple representations requires that the learner create referential connections between corresponding elements and corresponding structures in different representations. As this process is usually difficult, learners frequently fail to construct coherent mental representations and, thus, do not sufficiently understand the subject matter. This paper analyzes the effects of different kinds of instructional help on the process of coherence formation from multiple representations by learners with different prior knowledge. Three groups of university students with different domain-specific knowledge had to learn a complex subject matter from chemistry using six different forms of representation. In addition, a first group received directive help for coherence formation. A second group received non-directive help, and a third group received no instructional help. Results indicate that directive help is effective for recall performance because of its summarizing and repeating function. Furthermore, learners with different levels of prior knowledge show different reactions when help is given. For learners with insufficient prior knowledge help is not helpful or, in case of recall performance, even harmful. Learners with a medium level of prior knowledge can increase especially their comprehension performance when help is offered, whereas learners with too much prior knowledge seem not to be affected by help.  相似文献   

7.
8.
The expertise reversal effect occurs when instruction that is effective for novice learners is ineffective or even counterproductive for more expert learners. Four experiments designed to explore the expertise reversal effect in the field of teaching and learning foreign language listening skills were conducted. Three instructional formats (read-only, listen-only, and read-and-listen) were designed to teach native Chinese students English (experiments 1–3) or French (experiment 4) listening skills. Experiment 1 found a significant interaction with no effect for learners with lower levels of listening expertise but a significant effect for learners with higher levels of listening expertise favoring the read-only approach. The results of experiment 2 replicated the counterintuitive findings of experiment 1. Experiment 3 testing less knowledgeable students than experiments 1 and 2 indicated that the read-and-listen condition was more effective for novice learners. Experiment 4 testing beginner-level learners of French as a foreign language obtained results consistent with those of experiment 3 in that lower expertise learners gained greater benefits from the read-and-listen than the read-only or listen-only teaching approaches. It is concluded that the read-and-listen approach benefitted novice learners but more expert learners could benefit more from the read-only approach.  相似文献   

9.
Cognitive load theory (CLT) has been successful in identifying instructional formats that are more effective and efficient than conventional problem solving in the initial, novice phase of skill acquisition. However, recent findings regarding the “expertise reversal effect” have begun to stimulate cognitive load theorists to broaden their horizon to the question of how instructional design should be altered as a learner's knowledge increases. To answer this question, it is important to understand how expertise is acquired and what fosters its development. Expert performance research, and, in particular, the theoretical framework of deliberate practice have given us a better understanding of the principles and activities that are essential in order to excel in a domain. This article explores how these activities and principles can be used to design instructional formats based on CLT for higher levels of skills mastery. The value of these formats for e-learning environments in which learning tasks can be adaptively selected on the basis of online assessments of the learner's level of expertise is discussed. In their preparation of this article, the first and last authors were supported by an Internationalization grant from the Netherlands Organization for Scientific Research (NWO, The Hague, project number 411-01-010).  相似文献   

10.
教学视频因其多通道展现教学内容的特性而成为数字化学习资源的首选形态。线索作为教学视频中的重要引导性教学设计手段,探究其类型及学习者先前知识经验对学习效果的交互影响,有益于优化教学视频的设计策略。基于学习者先前知识经验水平(高水平和低水平)和线索类型(言语线索和视觉线索)两个维度,运用眼动追踪技术和认知负荷、学习满意度、学习效果等测量工具,通过实验考察二者对学习的影响及其内在机制后发现:学习者先前知识经验水平对认知负荷的影响显著;线索类型对学习满意度的影响显著,且线索类型与学习者先前知识经验水平在学习满意度上的交互效应显著;学习者先前知识经验水平对学习效果的影响显著,且线索类型与学习者先前知识经验水平在迁移测验成绩上的交互效应显著。实验结果表明,线索类型与学习者先前知识经验水平对学习满意度和学习效果存在明显的交互作用,即只有低知识经验水平学习者在学习含有视觉线索的教学视频后,学习满意度与学习效果才有显著提升。这可能是由于该类学习者在信息选择时存在困难,视觉线索可以帮助其提高信息搜索效率,而言语线索却会使其认知负荷超载。  相似文献   

11.
Within the cognitive load theory framework, we designed and compared three alternative instructional solution formats that can be derived from a common static hierarchical network representation depicting problem structure. The interactive-solution format permitted students to search in self-controlled manner for solution steps, static-solution format displayed all solutions steps, and no-solution format did not have solution steps. When we matched instructional time across the formats, in relation to the complex molarity problems rather than the dilution problems, differential transfer performance existed between the static-solution or no-solution formats and the interactive-solution format, but not between the static-solution format and no-solution format. The manner in which learners interact with the static-solution and no-solution formats depends on their level of expertise in the chemistry domain. With considerable learner expertise, provision of solution steps may be redundant incurring extraneous cognitive load. Absence of the solution steps may not have left sufficient cognitive capacity for germane cognitive load as some beginning learners lacked the prior knowledge to deduce the solution steps. Searching for solution steps presumably incurred extraneous cognitive load which interfered with learning and hence, in the interactive-solution format, it outweighed the benefit of engaging in self-regulated interaction with the content. Hence, cognitive load theory is a promising tool to predict the mental load associated with learning from the three alternative computer-based instructional formats.  相似文献   

12.
Self-explanation in the domain of statistics: an expertise reversal effect   总被引:1,自引:0,他引:1  
This study investigated the effects of four instructional methods on cognitive load, propositional knowledge, and conceptual understanding of statistics, for low prior knowledge students and for high prior knowledge students. The instructional methods were (1) a reading-only control condition, (2) answering open-ended questions, (3) answering open-ended questions and formulating arguments, and (4) studying worked-out examples of the type of arguments students in the third group had to formulate themselves. The results indicate that high prior knowledge students develop more propositional knowledge of statistics than low prior knowledge students. With regard to conceptual understanding, the results indicate an expertise reversal effect: low prior knowledge students learn most from studying worked-out examples, whereas high prior knowledge students profit most from formulating arguments. Thus, novice students should be guided into the subject matter by means of worked-out examples. As soon as students have developed more knowledge of the subject matter, they should be provided with learning tasks that stimulate students to solve problems by formulating arguments.  相似文献   

13.
An animation can have an informational advantage over a static picture by depicting dynamic features. The aim of this study was to investigate whether the provision of prerequisite knowledge can help learners infer dynamic features from a static picture. It was assumed that this supposedly more active processing with a static picture would result in longer lasting knowledge representations. A 2 × 2 × 2 between-subjects design with visualization format (static picture vs. animation), prerequisite knowledge (provided vs. not provided), and time of testing (immediate vs. one week later) was used (N = 260). The results of a transfer test showed that learners with low prerequisite knowledge benefited from the animation, but this was not the case for learners with high prerequisite knowledge. Time of testing had no influence. In line with the expertise reversal effect, prerequisite knowledge not only fostered learning with the static picture but also hindered learning with the animation.  相似文献   

14.
Previous research into the effectiveness of dynamic versus static instructional design paradigms has reported divergent findings. Dynamic instructions have been shown to be more effective in teaching novel procedural skills. In contrast, the apparent benefit of dynamic over static instructions has been attributed in other studies to the cognitive capabilities and previous knowledge of the learner. Can the benefit of dynamic instruction persist in learners with domain expertise on learning novel tasks? In this paper, we report the result of an experiment that shows that irrespective of the learner's previous knowledge, dynamic instructions retain a significant effectiveness over statics for teaching intra‐domain novel task performance. Twenty‐four participants with domain expertise were divided into three independent groups to perform a procedural motor task following treatment with different training interfaces. After controlling for spatial abilities and excluding previous specific‐to‐task knowledge, we observe that participants that trained with interfaces containing dynamic content recorded better task performance measures than others using non‐dynamic interfaces. This suggest that within the context of motor skill acquisition, dynamic instructional interfaces can yield significant increases to post‐learning task performance measures, which is independent of the learner's cognitive capabilities or previous knowledge.  相似文献   

15.
Theories on learning with Multiple External Representations (MER) claim that low prior knowledge learners in science have difficulties using MER, which are seen as necessary to achieve a conceptual understanding. In two experiments, we analyze the mechanisms underlying the learning of chemistry with MER. Our first experiment focuses on how MER can support learning. We found no difference in learning gains of conceptual understanding, regardless of the format (whether MER were provided or not). It is concluded that chemical MER on themself cannot be seen as learning aids. The second experiment compares three types of instructional aids (prompts, prompts with an answer, and note-taking) to determine which types of aids enhance learning with MER. Contrary to the findings of Seufert (Learn Instr 13:227?C237, 2003), path-analysis suggests that the lowest prior knowledge group benefits the most from instructional aids such as prompts and note-taking. These aids guide learners?? attention towards one specific representational format (symbols), while other formats (submicroscopic representations) receive less attention.  相似文献   

16.
The influence of prior knowledge and cognitive development on the effectiveness of iconic representations in science visualizations was examined. Middle and high school students (N = 186) were given narrated visualizations of two chemistry topics: Kinetic Molecular Theory (Day 1) and Ideal Gas Laws (Day 2). For half of the visualizations, iconic representations of key information were added. Results indicated a main effect of prior knowledge on learning in Day 1. In Day 2, a three-way interaction was found between prior knowledge, age group and icons: icons were effective for all middle school students and for high school students with low prior knowledge, but were not effective for high school students with high prior knowledge. These findings indicate that the expertise reversal effect can be mediated by cognitive development and other factors, not just domain specific prior knowledge.  相似文献   

17.
The worked example effect within cognitive load theory is a very well-established finding. The concrete effectiveness of worked examples in a learning situation, however, heavily depends on further moderating factors. For example, if learners improve their processing of worked examples by actively explaining the worked examples to themselves, they are usually better able to solve transfer problems. Another way to enhance example processing is to present learners with instructional explanations instead of prompting them to produce these explanations on their own. In this article, we review 21 experimental studies to address the issue whether instructional explanations support example-based learning. Meta-analytic results lead to three important conclusions: First, the benefits of instructional explanations for example-based learning per se are minimal. Second, instructional explanations are more helpful for acquiring conceptual knowledge than for acquiring procedural knowledge. Third, instructional explanations are not necessarily more effective than other methods supporting example processing such as self-explaining.  相似文献   

18.
The purpose of this study was to examine the effects of a metaphorical interface on germane cognitive load in Web-based instruction. Based on cognitive load theory, germane cognitive load is a cognitive investment for schema construction and automation. A new instrument developed in a previous study was used to measure students?? mental activities of schema construction and automation supported by structural cues in a metaphorical interface environment. Eighty participants were randomly assigned to one of two types of instructional units with the same instructional content and different interface types (i.e., non-metaphorical interface and metaphorical interface). The results indicated that germane cognitive load positively affected learning performance while there was no relationship between germane cognitive load and students?? prior knowledge. A metaphorical interface enhanced learners?? germane cognitive load and learning performance, and both germane cognitive load and prior knowledge similarly contributed to learning performance. The findings provide implications for the advancement of cognitive load theory and the practice of instructional development.  相似文献   

19.
When learners explore dynamic and interactive visualisations they are often not able to interact with them in a systematic and goal-oriented way. Frequently, even supporting learners in processes of discovery learning does not lead to better learning outcomes. This can be due to missing pre-requisite knowledge such as the coherent mental integration of the pictorial and symbolic sources of information. In order to support learners in this process, we encouraged them to interactively and externally relate different static sources of information to each other before exploring dynamic and interactive visualisations. We evaluated the benefit of this instructional support in two experimental studies concerning the domains of statistics and mechanics. It revealed that the active integration of static representations before processing dynamic visualisations resulted in better performance and can provide a basis for a more systematic and goal-oriented experimentation behaviour during simulation-based discovery learning.in final form: 16 November 2004  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号