首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在曲线的极坐标方程化到曲线的直角坐标方程时,常用到ρ~2=x~2+y~2。故ρ=±(x~2+y~2)~(1/2)。怎样确定“+”、“-”号?现在举例说明如下: 1.用ρ=(x~2+y~2)~(1/2)的情况。例1.化极坐标方程e~ρ=2+cosθ为直角坐标方程。解.因为2+cosθ≥1,所以原方程中ρ≥0,因此ρ=(x~2+y~2)~(1/2)。由e~ρ=2+cosθ得ρe~ρ=2ρ+ρcosθ。从而原方程可化为 (x~2+y~2)~(1/2)e~((x~2+y~2)~(1/2))=2(x~2+y~2)~(1/2)+x。例2.把极坐标方程ρ=1+cosθ化为直角坐标方程。  相似文献   

2.
文[1]证明了一个不等武:0≤x,y,x_1,y_1≤1,x x_1=1,y y_1=1,则L_2=(x~2 y~2)~(1/2) (x~2_1 y~2)~(1/2) (x~2 y~2_1)~(1/2) (x~2_1 y~2_1)~(1/2)≤2 2~(1/2),并根据L_2的几何意义提出了猜想.设0≤z,y,z,x_1,y_1,z_1≤1,x x_1=1,y y_1=1,z z_1=1,则L_3=(x~2 y~2 z~2)~(1/2) (x~2_1 y~2 z~2)~(1/2) (x~2_1 y~2_1 z~2)~(1/2) (x~2 y~2_1 z~2)~(1/2) (x~2 y~2 z~2_1)~(1/2) (x~2_1 y~2 z~2_1)~(1/2) (x~2 y~2_1 z~2_1)~(1/2)  相似文献   

3.
92年上海市有这样一道高考题: 设动直线l垂直于x轴,且与椭圆x~2/4 y~2/2=1交于A、B两点,P是l上满足|PA|·|PB|=1的点,求点P的轨迹方程,并说明轨迹是什么图形? 解:如图1,设点P(x,y),点A(x_1,y_1),则B(x,-y_1)。由于A、B两点在椭圆上,所以又由1-x~2/4=y_1~2/2等,得-2相似文献   

4.
关于因式分解的常用方法,中学课本中已作了介绍。本文要探讨的是根据题目的特征,运用比较特殊的方法,进行因式分解的问题。例1 在复域内分解: (x+1)(x+2)(x+3)(x+6)-3x~2 解原式=(x~2+7x+6)(x~2+5x+6)-3x~2推敲上式的特征,可知若令y=x~2+6x+6,原式就化为: (y+x)(y-x)-3x~2 =y~2-4x~2=(y+2x)(y-2x) =(x~2+8x+6)(x~+4x+6) =(x+4-10~(1/2))(x+4+10~(1/2)) (x+2-(2~(1/2))i)(x+2-(2~(1/2))i) 例2分解:(ab+1)(a+1)(b+1)+ab 解原式即(ab+1)[ab+1+a+b]+ab,若令(ab+1)=A,可得: 原式=A(A+a+b)+ab =A~2+(a+b)A+ab=(A+a)(A+b)  相似文献   

5.
在高二《解析几何》课本总复习题中有这样一道习题:“已知椭圆x~2/(16)+y~2/9=1,求椭圆内接正方形的面积.”(P 192) 对于这一道题,通常解法如下: 设椭圆内接正方形一个顶点坐标为(x_1,y_1),则另外三个顶点坐标为(-x_1,y_1)(-x_1,-y_1),(x_1,-y_1),再由正方形的特征可得|x_1|=|y_1|,代入椭圆方程立得:x_1~2/(16)+x_1~2/9=1,即得:x_1~2=(144)/(25) S正方形=4x_1~2=(576)/(25)  相似文献   

6.
设D是奇素数,运用初等数论的方法给出了在D=3(24k+4)(24k+5)+1(k∈N)的情形下不定方程x3+1=Dy2无正整数解的一个充分条件.  相似文献   

7.
本文利用如下的一个简单等式m个m~n m~n+m~n+…m~n=m~(n+1),求一类不定方程的一个正整数解。例1 求方程x~2+y~3=z~3的一个正整数解,并证明此方程有无穷多个正整数解。解:因为2和3的最小公倍数是6,将原方程与2~n+2~n=2~(n+1)比较,易知既是6的倍数,又比5的倍数小1的最小正整数n的值为24。∵ 2~(24)+2~(24)=2~(25),即 (2~(12))~2+(2~8)~3=(2~5)~5, ∴(2~(12),2~8,2~5)是原方程的一个正整数  相似文献   

8.
学过《平面解析几何》的同学都知道:过椭圆x~2/a~2+y~2/b~2=1上一点P(x_0,y_0)的切线的方程是(x_0x)/a~2+(y_0y)/b~2=1①因(x_0~2)/a~2+(y_0~2)/b~2=1,又可写成(x_0x)/a~2+(y_0y)/b~2=(x_0~2)/a~2=(y_0~2)/b~2②, 一些细心的同学会问:当P(x_0,y_0)点不在椭圆上时,方程①或②的几何意义是什么呢?过椭圆外定点的椭圆的切线能否用方程①或②来表示呢?而少数粗心的同学在解题时没考虑点P的位置,直接套用方程①或②导致错误的情况时有发生。因此,有必要引导学生利用熟知的原理和方法,进行一番较深入的探讨。下面我们给出:  相似文献   

9.
利用经典的Cayley-Hamilton定理,给出了矩阵core-EP逆和DMP逆的多项式方程.设奇异矩阵A的特征多项式为p_A(s)=det(_sE_n-A)=s~n+a_(n-1)s_(n-1)+…+a_1s,则f_A(A~⊕)=0和f_A(A~(d,+))=0,其中f_A(A)=a_1x~n+a_2x~(n-1)+…+a_(n-1)x~2+x,A~⊕和A~(d,+)分别是A的core-EP逆和DMP逆.并进一步讨论了A~D∈C_(n,n)和A~⊕∈C_(n,n)的特征多项式的性质.  相似文献   

10.
定理 已知(x_n,y_n)(n=0,1,2,…,r|2y_0)是方程 rx~2 rx=y~2 (1)的正整数解.则 事实上,将(2)代入(1)验证即知.由(2)即可求出(1)的求解公式.为此,命  相似文献   

11.
每期一题     
题:若:a、b、c为正数,试求函数y=(x~2+a~2)~(1/2)+((c-x)~2+b~2)~(1/2)的极小值。解法一复数法运用代数中学过的复数模不等式 |z_1|+|z_2|≥|z_1+z_2|。设 z_1=x+ai x_2=(c-x)+bi ∴|z_1|=(x~2+a~2)~(1/2) |z_2|=((c-x)~2+b~2)~(1/2) ∵|z_1|+|z_2|≥|z_1+z_2| ∴y=|z_1|+|z_2|≥|z_1+z_2| =|x+ai+c-x+bi| =|c+(a+b)i|=(c~2+(a+b)~2)~(1/2) ∴y_min=(c~2+(a+b)~2)~(1/2)。解法二代数法运用不等式(x_1~2+y_1~2)~(1/2)+(x_2~2+y_2~2)~(1/2)≥((x_1+x_2)~2+(y_1+y_2)~2)~(1/2)其中等号仅当x_1/x_2=y_1/y_2时成立。∴y=(x~2+a~2)~(1/2)+((c-x)~2+b~2)~(1/2)  相似文献   

12.
妙在增设     
例1 解方程5x~2 x-x(5x~2-1)~(1/2)=2.解:令 y=(5x~2-1)~(1/2),则5x~2=y~2 1,原方程化为:y~2 1 x-xy=2,y~2-1-x(y-1)=0,  相似文献   

13.
定理 设x,y,z∈R,且x y z=0,则对任意的n∈N,恒有2~(n 1)(x~(2n) y~(2n) z~(2n))≥(x~2 y~2 z~2)~n (1)  相似文献   

14.
成人中专试用教材《数学》(李祥伦主编)第二册P_124练习题10第6题是一道带“*”的习题,可以按一般方法求解。在教学实践中,我还给学生介绍了一种更为简便的方法,在此写出供教师们指正。 我们知道,以直线y=0和x=O为渐近线的双曲线方程可表为xy=k(常数k≠0);以直线bx+ay=0和bx-ay=0为渐近线的双曲线方程可表为b~2x~2-a~2y~2=k(常数k≠0)。那么,一般地,以直线A_(1x)+B_(1y)+C_1=0和A_(2x)+B_(2y)+C_2=0为渐近线的双曲线方程是否可表为(A_(1x)+B_(1y)+C_1)(A_(2x)+B_(2y)+C_2)=k(常数k≠0)呢?回答是肯定的。  相似文献   

15.
每期一题     
题:从射线OB与圆x~2 y~2=2ax的交点B向Ox轴作垂线BC,C为垂足,求C在OB上射影的轨迹方程。解一:选取过定点的动直线斜率为参数。如右图,设直线OB斜率为k(k为参数),OB直线方程为y=kx, y=kx由 { x~2 y~2=2ax, x_1=0 x_2=2a/(1 k~2) ∴ { { y_1=0 y_2=2ak/(1 k~2) 则C(2a/(1 k~2),0)  相似文献   

16.
求二次曲线以已知点为中点的弦的方程和弦的中点轨迹问题,已有不少文章论及,提出了许多不同的解法。本文从直线与二次曲线族的位置关系出发,也对这类问题进行一些探讨。一、二次曲线以已知点为中点的弦的方程我们知道,若直线l与圆心为O,半径为r的圆相切于P点,则任一以O为圆心,半径大于r的圆截l所得的弦都以P为中点。故给出点P(x_0,y_0)(异于原点)和圆x~2 y~2=R~2,当R~2>x_0~2 y_0~2时,要求以P为中点的弦所在直线的方程,只须在以原点为圆心的圆族x~2 y~2=r~2内,求出圆x~2 y~2=x_0~2 y_0~2在P点的切线方程即可,其方程为x_0x y_0y=x_0~2 y_0~2,即  相似文献   

17.
引理不定方程x~2-y~2=c(c∈Z)有整数解的充要条件是c■2(mod4)。证:必要性。若存在整数x、y使x~2-y~2=c■(x y)(x-y)=c,∵x y、x-y同奇偶,∴c是奇数,或者4|c,故c■2(mod4)。充分性。设c■2(mod4),则ⅰ)c≡0(mod4),c/4 1,c/4-1∈z,而(c/4 1)~2-(c/4-1)~2=c,即x~2-y~2=c有整数解(c/4 1,c/4-1)。ⅱ) c≡1(mod4)或c≡3(mod4),(c 1)/2,(c-1)/2∈Z,((c 1)/2)~2-((c-1)/2)~2=c,方程x~2-y~2=c有整数解((c 1)/2,(c-1)/2)。引理证毕。对不定方程x_1~2 x_2~2 … x_n~2=x_(n 1)~2,若令x_i  相似文献   

18.
高中《解析几何》课本(必修)第62页给出过“已知圆x~2 y~2=r~2上一点M(x_0,y_0)的切线方程是x_0x y_0y=r~2”。有趣的是在某些条件下,这种形式的方程不表示圆的切线。 设M(x_0,y_0)是圆x~2 y~2=r~2外的一点。从M引圆的两条切线MA、MB,其中A(x_1,y_1)、B(x_2,y_2)为切点。那么,MA的方程是x_1x y_1y=r~2。  相似文献   

19.
有正整数解,则对任意m∈N,方程 x_11 x_22 … x_nn=y~m ②有正整数解。 证 设(x_1′,x_2′,…,x_n′;y_0)为①的一组正整数解,对任意的m∈N,取M=[m,β],而a_i|α,α|β,故  相似文献   

20.
勾股多项式     
在整数环Z中,通常把满足不定方程x~2+y~2=z~2的正整数解(x_0,y_0,z_0)叫做勾股数,我们可把这一问题引申到实数域R上的多项式环R[t]中进行讨论,相应地得到了有关勾股多项式的有趣结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号