首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, containment control problems of networked fractional-order multi-agent systems with time-varying delays are studied. The normalized directed graphs are employed to characterize the communication topologies. Two sampled-data based containment control protocols are proposed, which can overcome the time-varying delays and switching topologies. It is interestingly found that the decays of the closed-loop systems correspond to the Mittag-Leffler function and its approximation, which are the extensions of the exponential function and its approximation, respectively. Based on the algebraic graph theory, the properties of row-stochastic matrix, and the relation between the topologies and the matrices, some conditions for containment control are established. For the fixed topology, a necessary and sufficient condition is obtained; and for the switching topology, a sufficient condition is provided. Finally, the theoretical results are illustrated by several numerical simulations.  相似文献   

2.
This paper investigates consensus problem for heterogeneous discrete linear time-invariant (LTI) multi-agent systems subjected to time-varying network communication delays and switching topology. A new two-stage consensus protocol is proposed based on stochastic, indecomposable and aperiodic (SIA) matrix and pseudo predictive scheme. With pseudo predictive scheme the network delay is compromised. Consensus analysis based on seminorm is provided. Results give conditions for such systems with periodic switching topology and time-varying delays to reach consensus. Highlights of the paper include: the protocol can be implemented in a distributed manner; the pseudo predictive approach requires less computation and communication; the verification of consensus convergence does not require the global information about the communication topology; the protocol allows delay to be time-varying, topology to dynamically and asymmetrically switch and system mode to be unstable. Numerical and practical examples demonstrate the effectiveness of the theoretical results.  相似文献   

3.
In this study, an adaptive interval type-2 Takagi-Sugeno-Kang fuzzy logic controller based on reinforcement learning (AIT2-TSK-FLC-RL) is proposed. The proposed controller consists of an actor, a critic and a reward signal. The actor is represented by the IT2-TSK-FLC in which the antecedents and the consequents are interval type-2 fuzzy sets (IT2FSs) and type-1 fuzzy sets (T1FSs), respectively, which are named A2-C1. The critic is represented by a neural network, which approximates the optimal guaranteed cost in the control design to ensure the system stability for all admissible uncertainties and noise. The use of a reward signal to formalize the idea of a goal is one of the most distinctive features of RL. Thus, the proposed controller evolves in time as a result of the online learning algorithm. The parameters of the proposed controller are learned online based on the Lyapunov theorem to guarantee the stability, overcome the shortcomings of the gradient descent, such as the local minima and instability, and determine the learning rate of the IT2-TSK-FLC controller. Furthermore, the critic stability is discussed for determining the optimal learning rate. The proposed controller is applied to uncertain nonlinear systems to show its robustness in reducing the effect of system uncertainties and external disturbances and is compared to other controllers.  相似文献   

4.
In this paper, we apply iterative learning control to both linear and nonlinear fractional-order multi-agent systems to solve consensus tacking problem. Both fixed and iteration-varying communicating graphs are addressed in this paper. For linear systems, a PDα-type update law with initial state learning mechanism is introduced by virtue of the memory property of fractional-order derivative. For nonlinear systems, a Dα-type update law with forgetting factor and initial state learning is designed. Sufficient conditions for both linear and nonlinear systems are established to guarantee all agents achieving the asymptotic output consensus. Simulation examples are provided to verify the proposed schemes.  相似文献   

5.
This paper presents two novel general summation inequalities, respectively, in the upper and lower discrete regions. Thanks to the orthogonal polynomials defined in different inner spaces, various concrete single/multiple summation inequalities are obtained from the two general summation inequalities, which include almost all of the existing summation inequalities, e.g., the Jensen, the Wirtinger-based and the auxiliary function-based summation inequalities. Based on the new summation inequalities, a less conservative stability condition is derived for discrete-time systems with time-varying delay. Numerical examples are given to show the effectiveness of the proposed approach.  相似文献   

6.
This paper proposes a probabilistic fuzzy proportional - integral (PFPI) controller for controlling uncertain nonlinear systems. Firstly, the probabilistic fuzzy logic system (PFLS) improves the capability of the ordinary fuzzy logic system (FLS) to overcome various uncertainties in the controlled dynamical systems by integrating the probability method into the fuzzy logic system. Moreover, the input/output relationship for the proposed PFPI controller is derived. The resulting structure is equivalent to nonlinear PI controller and the equivalent gains for the proposed PFPI controller are a nonlinear function of input variables. These gains are changed as the input variables changed. The sufficient conditions for the proposed PFPI controller, which achieve the bounded-input bounded-output (BIBO) stability are obtained based on the small gain theorem. Finally, the obtained results indicate that the PFPI controller is able to reduce the effect of the system uncertainties compared with the fuzzy PI (FPI) controller.  相似文献   

7.
This paper is concerned with the tracking control problem for nonlinear heterogeneous multi-agent systems with a static leader, where the leader’s state is only available to a small portion of follower agents. The considered multi-agent system is composed of first- and second-order follower agents with unknown nonlinearities and unknown disturbances, and the communication graph of follower agents is fixed and directed. A robust adaptive neural network controller is designed for each follower agent. By applying the Lyapunov theory with the singular value analysis method, it is shown that all follower agents will synchronize to the leader agent with bounded residual errors. A numerical example is presented to demonstrate the effectiveness of the theoretical findings.  相似文献   

8.
A full order fractional-order observer is designed for a class of Lipschitz continuous-time nonlinear fractional-order systems with unknown input. Sufficient conditions of existence for the designed observer and stability of state estimation error system are developed by reconstructing state and using general quadratic Lyapunov function. By applying fractional-order extension of Lyapunov direct method, the stability of the fractional-order state estimation error system is analyzed. Due to the conditions involving a nonlinear matrix inequality, a new sufficient condition with linear matrix inequality (LMI) is reformulated, which makes the full order fractional-order observer implemented easily by using Matlab LMI toolbox. Examples are taken to show the effectiveness of the proposed approach by numerical simulations.  相似文献   

9.
This paper is concerned with a leader-follower consensus problem for networked Lipschitz nonlinear multi-agent systems. An event-triggered consensus controller is developed with the consideration of discontinuous state feedback. To further enhance the robustness of the proposed controller, modeling uncertainty and switching topology are also considered in the stability analysis. Meanwhile, a time-delay equivalent approach is adopted to deal with the discrete-time control problem. Particularly, a sufficient condition for the stochastic stabilization of the networked multi-agent systems is proposed based on the Lyapunov functional method. Furthermore, an optimization algorithm is developed to derive the parameters of the controller. Finally, numerical simulation is conducted to demonstrate the effectiveness of the proposed control algorithm.  相似文献   

10.
It is well known that a fractional-order system with a continuous right hand side does not have finite-time stable equilibria, but the discontinuous case has remained elusive in literature. Thus, based on novel mathematical tools, recently published in literature, it is demonstrated that attaining finite-time stable equilibria is not possible for a fractional-order system, not even in the case of an impulsive or discontinuous feedback. In consequence, it is demonstrated that, for a fractional-order system, a Lyapunov stable equilibrium cannot be at the same time finite-time stable.  相似文献   

11.
In this paper, the distributed fault diagnosis (DFD) of networked dynamical systems with time-varying connected topologies, e.g., wireless sensor networks in harsh environments, is considered. Specifically, two essential problems are focused on, which are faced in extending the the decomposition-based adaptive DFD approach to such topology-varying systems. The problems introduced by the time-varying topologies are, respectively, decomposition schemes deterioration and pre-training difficulties. The causes of the two problems are detailed and addressed in our work. First, for the decomposition schemes deterioration problem, a multi-agent dynamics-based online distributed decomposition algorithm are developed, so that a decent decomposed network structure for such topology-varying network can be maintained. Second, to alleviate the pre-training difficulties in topology-varying systems, a fault detection method is proposed, which avoids the need for pre-training. The distributed decomposition algorithm is proved to converge in finite steps, and the proposed fault detection method is verified both theoretically and experimentally.  相似文献   

12.
This paper investigates the finite-time consensus problem of uncertain nonlinear multi-agent systems with asymmetric time-varying delays and directed communication topology. An auxiliary system is firstly designed to deal with the continuous or discontinuous time-varying communication delays. Based on the finite-time input-to-output framework, a novel consensus scheme relying on local delayed information exchange is proposed. Moreover, by utilizing an auxiliary integrated regressor matrix and vector method, the system uncertainties can be accurately estimated. Then the consensus of multi-agent systems can be achieved within finite time by selecting the control gains simply. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed control algorithms.  相似文献   

13.
This paper investigates a new adaptive iterative learning control protocol design for uncertain nonlinear multi-agent systems with unknown gain signs. Based on Nussbaum gain, adaptive iterative learning control protocols are designed for each follower agent and the adaptive laws depend on the information available from the agents in the neighbourhood. The proper protocols guarantee each follower agent track the leader perfectly on the finite time interval and the Nussbaum-type item can seek control direction adaptively. Furthermore, the formation problem is studied as an extension. Finally, simulation examples are given to demonstrate the effectiveness of the proposed method in this article.  相似文献   

14.
Rotary steerable system (RSS) is a directional drilling technique which has been applied in oil and gas exploration under complex environment for the requirements of fossil energy and geological prospecting. The nonlinearities and uncertainties which are caused by dynamical device, mechanical structure, extreme downhole environment and requirements of complex trajectory design in the actual drilling work increase the difficulties of accurate trajectory tracking. This paper proposes a model-based dual-loop feedback cooperative control method based on interval type-2 fuzzy logic control (IT2FLC) and actor-critic reinforcement learning (RL) algorithms with one-order digital low-pass filters (LPF) for three-dimensional trajectory tracking of RSS. In the proposed RSS trajectory tracking control architecture, an IT2FLC is utilized to deal with system nonlinearities and uncertainties, and an online iterative actor-critic RL controller structured by radial basis function neural networks (RBFNN) and adaptive dynamic programming (ADP) is exploited to eliminate the stick–slip oscillations relying on its approximate properties both in action function (actor) and value function (critic). The two control effects are fused to constitute cooperative controller to realize accurate trajectory tracking of RSS. The effectiveness of our controller is validated by simulations on designed function tests for angle building hole rate and complete downhole trajectory tracking, and by comparisons with other control methods.  相似文献   

15.
This paper addresses the challenging problem of decentralized adaptive control for a class of coupled hidden leader-follower multi-agent systems, in which each agent is described by a nonlinearly parameterized uncertain model in discrete time and can interact with its neighbors via the history information from its neighbors. One of the agents is a leader, who knows the desired reference trajectory, while other agents cannot receive the desired reference signal or are unaware of existence of the leader. In order to tackle unknown internal parameters and unknown high-frequency gains, a projection-type parameter estimation algorithm is proposed. Based on the certainty equivalence principle and neighborhood history information, the decentralized adaptive control is designed, under which, the boundedness of identification error is guaranteed with the help of the Lyapunov theory. Under some conditions, it is shown that the multi-agent system eventually achieves synchronization in the presence of strong couplings. Finally, a simulation example is given to support the results of the proposed scheme.  相似文献   

16.
This paper proposes a novel application of Nonlinear Proportional-Integral-Derivative (NPID) controller to effectively attain Maximum Power Point Tracking (MPPT) in Photovoltaic (PV) systems. The proposed controller is based on the basic structure of the PID controller wherein, its integral term gain is varied at run time according to instantaneous error. The performance of the NPID controller is assessed in terms of undershoot, settling time and ripple which have been evaluated under varying realistic irradiation and temperature profiles. The Teaching Learning Based Optimization (TLBO) tuned NPID controller is found to be superior to TLBO tuned PID, Perturb and Observe and Incremental Conductance classical MPPT methods for all the considered environmental profiles. Therefore, based on the presented comprehensive investigations, it is concluded that the proposed NPID controller is a promising MPPT technique.  相似文献   

17.
In this paper, the leader-following consensus problem of general linear multi-agent systems without direct access to real-time state is investigated. A novel observer-based event-triggered tracking consensus control scheme is proposed. In the control scheme, a distributed observer is designed to estimate the relative full states, which are used in tracking consensus protocol to achieve overall consensus. And an event-triggered mechanism with estimated state-dependent event condition is adopted to update the control signals so as to reduce unnecessary data communication. Based on the Lyapunov theorem and graph theory, the proposed event-triggered control scheme is proved to implement the tracking consensus when real-time state cannot direct obtain. Moreover, such scheme can exclude Zeno-behavior. Finally, numerical simulations illustrate the effectiveness of the theoretical results.  相似文献   

18.
This paper addresses the interval type-2 fuzzy robust dynamic output-feedback control problem for a class of nonlinear continuous-time systems with parametric uncertainties and immeasurable premise variables. First, the parametric uncertainties are assumed to be a subsystem based on the control input matrix and output matrix, and described as a linear fractional. Secondly, the nonlinear continuous-time systems are described by the interval type-2 fuzzy model. Thirdly, the new dynamic output feedback controller is designed based on the interval type-2 fuzzy model and the linear fractional (parametric uncertainties), the sufficient conditions for robust stabilization are given in the form of linear matrix inequalities (LMIs). Compared with previous work, the developed methods not only have abilities to handle the fuzzy system with immeasurable premise variables but also can deal with the parametric uncertainties effectively. The results are further extended to a mobile robot case and a chemical process case. Finally, two simulation examples are performed to show the effectiveness of the propose methods.  相似文献   

19.
Time-varying formation tracking problems for high-order multi-agent systems with switching topologies are investigated. Different from the previous work, the states of the followers form a predefined time-varying formation while tracking the state of the leader with bounded unknown control input. Besides, the communication topology can be switching, and the dynamics of each agent can have nonlinearities. Firstly, a nonlinear time-varying formation tracking control protocol is presented which is constructed using only local neighboring information. Secondly, an algorithm with four steps is proposed to design the time-varying formation tracking protocol, where the time-varying formation tracking feasibility condition is introduced. Thirdly, by using the Lyapunov theory, the stability of the proposed algorithm is proven. It is proved that the high-order multi-agent system with switching topologies achieves the time-varying formation tracking if the feasibility condition holds and the dwell time is larger than a positive constant. Finally, a numerical example with six followers and one leader is given to demonstrate the effectiveness of the obtained results.  相似文献   

20.
This paper investigates the problem of stabilization for fuzzy sampled-data systems with variable sampling. A novel Lyapunov–Krasovskii functional (LKF) is introduced to the fuzzy systems. The benefit of the new approach is that the LKF develops more information about actual sampling pattern of the fuzzy sampled-data systems. In addition, some symmetric matrices involved in the LKF are not required to be positive definite. Based on a recently introduced Wirtinger-based integral inequality that has been shown to be less conservative than Jensen’s inequality, much less conservative stabilization conditions are obtained. Then, the corresponding sampled-data controller can be synthesized by solving a set of linear matrix inequalities (LMIs). Finally, an illustrative example is given to show the feasibility and effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号