首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper investigates spacecraft output feedback attitude control problem based on extended state observer (ESO) and adaptive dynamic programming (ADP) approach. For the plant described by the unit quaternion, an ESO is first presented in view of the property of the attitude motion, and the norm constraint on the unit quaternion can be satisfied theoretically. The practical convergence proof of the developed ESO is illustrated by change of coordinates. Then, the controller is designed with an involvement of two parts: the basic part and the supplementary part. For the basic part, a proportional-derivative control law is designed. For the supplementary part, an ADP method called action-dependent heuristic dynamic programming (ADHDP) is adopted, which provides a supplementary control action according to the differences between the actual and the desired system signals. Simulation studies validate the effectiveness of the proposed scheme.  相似文献   

2.
This paper presents a novel integrated guidance and control strategy for homing of unmanned underwater vehicles (UUVs) in 5-degree-of-freedom (DOF), where the vehicles are assumed to be underactuated at high speed and required to move towards the final docking path. During the initial homing stage, the guidance system is first designed by geometrical analysis method to generate a feasible reference trajectory. Then, in the backstepping framework, the proposed trajectory tracking controller can achieve all the tracking errors in the closed-loop system convergence to a small neighbourhood of zero. It means that the vehicle's dynamics are consistent with the reference trajectory derived in the previous step. To demonstrate the effectiveness of the proposed guidance and control strategy, the complete stability analysis used Lyapunov's method is given in the paper, and simulation results of all initial conditions are presented and discussed.  相似文献   

3.
Due to the extreme large flight scale of Hypersonic Vehicle (HSV), the system inevitably possesses strong nonlinearity, coupling, fast time-variability and is also sensitive to disturbance and fault. The method of external anti-windup system combined with the terminal sliding mode control law (TSMC) is presented for the nonlinear control problem under the restriction of control surfaces for HSV. It can realize the compensation for the control surface saturation and let the HSV smoothly track the command signals. Then, the improved sliding mode disturbance observer (ISMDO) is proposed to estimate unknown parameters and strong external disturbance as well as the unknown actuator fault. This method does not need the information of disturbance and the fault bounds and has fewer learning parameters, which makes it suitable for the real-time control. Finally, the simulation test of attitude control for the reentry HSV is conducted, and the results show the effectiveness and robustness of the proposed scheme.  相似文献   

4.
In this paper, a novel backstepping-based adaptive dynamic programming (ADP) method is developed to solve the problem of intercepting a maneuver target in the presence of full-state and input constraints. To address state constraints, a barrier Lyapunov function is introduced to every backstepping procedure. An auxiliary design system is employed to compensate the input constraints. Then, an adaptive backstepping feedforward control strategy is designed, by which the tracking problem for strict-feedback systems can be reduced to an equivalence optimal regulation problem for affine nonlinear systems. Secondly, an adaptive optimal controller is developed by using ADP technique, in which a critic network is constructed to approximate the solution of the associated Hamilton–Jacobi–Bellman (HJB) equation. Therefore, the whole control scheme consists of an adaptive feedforward controller and an optimal feedback controller. By utilizing Lyapunov's direct method, all signals in the closed-loop system are guaranteed to be uniformly ultimately bounded (UUB). Finally, the effectiveness of the proposed strategy is demonstrated by using a simple nonlinear system and a nonlinear two-dimensional missile-target interception system.  相似文献   

5.
In this work, considering the roll dynamics and actuator dynamics, an observer-based control scheme for a vehicle is proposed. The proposal considers a nonlinear higher order sliding mode observer to estimate unmeasurable lateral velocity, roll angle and roll velocity. Using the observer information, a controller based on block control with sliding mode technique is designed for the reference trajectory tracking of the lateral and yaw velocities of the vehicle. The stability of the complete closed-loop system including zero dynamics is analyzed. The effectiveness of the proposed scheme is demonstrated through CarSim simulations.  相似文献   

6.
In this paper, the data-driven adaptive dynamic programming (ADP) algorithm is proposed to deal with the optimal tracking problem for the general discrete-time (DT) systems with delays for the first time. The model-free ADP algorithm is presented by using only the system’s input, output and the reference trajectory of the finite steps of historical data. First, the augmented state equation is constructed based on the time-delay system and the reference system. Second, a novel data-driven state equation is derived by virtue of the history data composed of input, output and reference trajectory, which is considered as a state estimator.Then, a novel data-driven Bellman equation for the linear quadratic tracking (LQT) problem with delays is deduced. Finally, the data-driven ADP algorithm is designed to solve the LQT problem with delays and does not require any system dynamics. The simulation result demonstrates the validity of the proposed data-driven ADP algorithm in this paper for the LQT problem with delays.  相似文献   

7.
The problem of source localization using time-difference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA) measurements has been widely studied. It is commonly formulated as a weighted least squares (WLS) problem with quadratic equality constraints. Due to the nonconvex nature of this formulation, it is difficult to produce a global solution. To tackle this issue, semidefinite programming (SDP) is utilized to convert the WLS problem to a convex optimization problem. However, the SDP-based methods will suffer obvious performance degradation when the noise level is high. In this paper, we devise a new localization solution using the SDP together with reformulation-linearization technique (RLT). Specifically, we firstly apply the RLT strategy to convert the WLS problem to a convex problem, and then add the SDP constraint to tighten the feasible region of the resultant formulation. Moreover, this solution is also extended for cases when there are sensor position and velocity errors. Numerical results show that our solution has significant accuracy advantages over the existing localization schemes at high noise levels.  相似文献   

8.
In this paper, the issue about the stationary distribution for hybrid multi-stochastic-weight coupled networks (HMSWCN) via aperiodically intermittent control is investigated. Specially, when stochastic disturbance gets to zero, the exponential stability in pth moment for hybrid multi-weight coupled networks (HMWCN) is considered. Under the framework of the Lyapunov method, M-matrix and Kirchhoff’s Matrix Tree Theorem in the graph theory, several sufficient conditions are derived to guarantee the existence of a stationary distribution and exponential stability. Different from previous work, the existing area of a stationary distribution is not only related to the topological structure of coupled networks, but also aperiodically intermittent control (the rate of control width and control duration). Subsequently, as an application to theoretical results, a class of hybrid multi-stochastic-weight coupled oscillators is studied. Ultimately, numerical examples are carried out to demonstrate the effectiveness of theoretical results and effects of the control schemes.  相似文献   

9.
A rule-based energy management strategy, that the control rules are extracted from acknowledged optimal algorithms and its control parameters are optimized offline and corrected online, for a series-parallel hybrid powertrain with an automatic mechanical transmission (AMT) is proposed in this paper to achieve near optimal fuel economy and battery state-of-charge (SOC) balance. Firstly, the dynamic programming (DP) global optimization method is applied to extract driving-mode transition rules and gear shifting rules. Furthermore, an instantaneous equivalent fuel consumption minimizing optimization method (ECMS) is utilized to determinate the engine torque distribution rules during its parallel driving mode. Then selected control parameters of driving-mode switching rules and torque split distribution are optimized based on genetic algorithm (GA) for further fuel consumption improvement. And the adaptive correction of optimized control parameters based on online driving cycle recognition method is discussed also. The simulation results show that this real-time rule-based energy management control strategy associated with the series of optimization approaches comprehensively can achieve a relatively close fuel consumption results to global optimal results and sustain the battery SOC balance after the end of driving cycle without much cycle-depending care.  相似文献   

10.
This paper aims to develop a robust optimal control method for longitudinal dynamics of missile systems with full-state constraints suffering from mismatched disturbances by using adaptive dynamic programming (ADP) technique. First, the constrained states are mapped by smooth functions, thus, the considered systems become nonlinear systems without state constraints subject to unknown approximation error. In order to estimate the unknown disturbances, a nonlinear disturbance observer (NDO) is designed. Based on the output of disturbance observer, an integral sliding mode controller (ISMC) is derived to counteract the effects of disturbances and unknown approximation error, thus ensuring the stability of nonlinear systems. Subsequently, the ADP technique is utilized to learn an adaptive optimal controller for the nominal systems, in which a critic network is constructed with a novel weight update law. By utilizing the Lyapunov's method, the stability of the closed-loop system and the convergence of the estimation weight for critic network are guaranteed. Finally, the feasibility and effectiveness of the proposed controller are demonstrated by using longitudinal dynamics of a missile.  相似文献   

11.
This paper addresses a finite-time rendezvous problem for a group of unmanned aerial vehicles (UAVs), in the absence of a leader or a reference trajectory. When the UAVs do not cooperate, they are assumed to use Nash equilibrium strategies (NES). However, when the UAVs can communicate among themselves, they can implement cooperative game theoretic strategies for mutual benefit. In a convex linear quadratic differential game (LQDG), a Pareto-optimal solution (POS) is obtained when the UAVs jointly minimize a team cost functional, which is constructed through a convex combination of individual cost functionals. This paper proposes an algorithm to determine the convex combination of weights corresponding to the Pareto-optimal Nash Bargaining Solution (NBS), which offers each UAV a lower cost than that incurred from the NES. Conditions on the cost functions that make the proposed algorithm converge to the NBS are presented. A UAV, programmed to choose its strategies at a given time based upon cost-to-go estimates for the rest of the game duration, may switch to NES finding it to be more beneficial than continuing with a cooperative strategy it previously agreed upon with the other UAVs. For such scenarios, a renegotiation method, that makes use of the proposed algorithm to obtain the NBS corresponding to the state of the game at an intermediate time, is proposed. This renegotiation method helps to establish cooperation between UAVs and prevents non-cooperative behaviour. In this context, the conditions of time consistency of a cooperative solution have been derived in connection to LQDG. The efficacy of the guidance law derived from the proposed algorithm is illustrated through simulations.  相似文献   

12.
In this paper, an integrated design of data-driven fault-tolerant tracking control is addressed relying on the Markov parameters sequence identification and adaptive dynamic programming techniques. For the unknown model systems, the sequence of Markov parameters together with the covariance of innovation signal is firstly estimated by least square method. After a transformation of value function from stochastic to deterministic, a policy iteration adaptive dynamic programming algorithm is then formulated to find the optimal tracking control law. In order to eliminate the influence of unpredicted faults, an active fault-tolerant supervisory control strategy is further constructed by synthesizing fault detection, isolation, estimation and compensation. All these involved designs are performed in the data-driven manner, and thus avoid the information requirement about system drift dynamics. From the perspective of system operation management, the above integrated control scheme provides a framework to achieve the tracking performance optimization, monitoring and maintaining simultaneously. The effectiveness of these conclusions is finally verified via two case studies.  相似文献   

13.
In this paper, the event-triggered distributed multi-sensor data fusion algorithm is presented for wireless sensor networks (WSNs) based on a new event-triggered strategy. The threshold of the event is set according to the chi-square distribution that is constructed by the difference of the measurement of the current time and the measurement of the last sampled moment. When the event-triggered decision variable value is larger than the threshold, the event is triggered and the observation is sampled for state estimation. In designing the dynamic event-triggered strategy, we relate the threshold with the quantity in the chi-square distribution table. Therefore, compared to the existed event-triggered algorithms, this novel event-triggered strategy can give the specific sampling/communication rate directly and intuitively. In addition, for the presented distributed fusion in wireless sensor networks, only the measurements in the neighborhood (i.e., the neighbor nodes and the neighbor’s neighbor nodes) of the fusion center are fused so that it can obtain the optimal state estimation under limited energy consumption. A numerical example is used to illustrate the effectiveness of the presented algorithm.  相似文献   

14.
In this paper, a practical technology or solution of quality-related fault diagnosis is provided for nonlinear and dynamic process. Unlike traditional data-based fault diagnosis methods, the alternative approach is focused more on identifying the propagation path that combines diagnostic information and process knowledge. The new method addresses the quality-related fault detection issue with developed nonlinear dynamic latent variable model for extracting nonlinear latent variables that exhibit dynamic correlations, then the advantage of relative reconstruction based contribution approach is followed to analyze the potential root-cause variables. Meanwhile, a new partitioned Bayesian network methodology is proposed for propagation path identification of quality-related faults. Finally, the whole proposed framework is applied to a real hot strip mill process, where the effectiveness is further demonstrated from real industrial data.  相似文献   

15.
This paper describes the application of the genetic algorithm for the optimization of the control parameters in parallel hybrid electric vehicles (HEV). The HEV control strategy is the algorithm according to which energy is produced, used, and saved. Therefore, optimal management of the energy components is a key element for the success of a HEV. In this study, based on an electric assist control strategy (EACS), the fitness function is defined so as to minimize the vehicle engine fuel consumption (FC) and emissions. The driving performance requirements are then considered as constraints. In addition, in order to reduce the number of the decision variables, a new approach is used for the battery control parameters. Finally, the optimization process is performed over three different driving cycles including ECE-EUDC, FTP and TEH-CAR. The results from the computer simulation show the effectiveness of the approach and reduction in FC and emissions while ensuring that the vehicle performance is not sacrificed.  相似文献   

16.
A global state feedback tracking controller for a class of vehicles, namely marine vehicles, hovercrafts and indoor airships is considered in this paper. The control algorithm uses a velocity transformation of the vehicle equations of motion. It is shown that this algorithm is suitable for control of fully actuated systems and leads to fast response. This property arises from the fact that the dynamical couplings in the vehicle are taken into account in the control gain matrix. A Lyapunov-like function is proposed for the stability analysis of the system under the controller. The algorithms robustness issue is considered too. Numerical simulations are given to illustrate effectiveness of the approach.  相似文献   

17.
This paper establishes connection between discrete cosine transform (DCT) and the discrete-time fractional Brownian motion process (dfBm). It is proved that the eigenvectors of the auto-covariance matrix of a dfBm can be approximated by DCT basis vectors in the asymptotic sense. This shows that DCT basis acts as discrete Karhunen–Loève transform (DKLT) for these processes in the approximate sense. Analytic perturbation theory of linear operators is used to prove this result. This result will be of great practical significance in applications where one is looking for an appropriate basis to work with signals that can perhaps be modeled as belonging to fBm processes. The utility of the proposed work has been illustrated with two real-life data (a) on compressive sampling based reconstruction of financial time-series and (b) in denoising gravitational wave event GW150914 data obtained from a binary black hole merger.  相似文献   

18.
This paper introduces a new load frequency control (LFC) model in the presence of high wind power penetration level. The main issue in a wind-penetrated power system is to maintain the system frequency in a normal operating band which is specified by the given system grid codes. Essentially, the power system equilibrium point changes following a contingency, and in this case, the high penetration of wind farms makes it harder to regain an acceptable system equilibrium points through conventional control applications. In order to overcome the aforesaid problem, a new Fuzzy-logic controller is designed optimally in this paper using the artificial bee colony (ABC) algorithm. In this approach, the ABC algorithm tunes the membership function parameters of the Fuzzy controller to acquire a good-enough performace of the proposed strategy. More importantly, the proposed Fuzzy-logic controller is blessed with robustness, simplicity, and reliability in order to ameliorate the frequency deviation. It is worth saying that the stability analysis is presented in this paper as well as the noise analysis of the proposed method. The research results indicates how effectively wind farm could participate in the system frequency control through inertial control, primary frequency control, and supplementary frequency control.  相似文献   

19.
This paper studies the neural adaptive control design for robotic systems with uncertain dynamics under the existence of velocity constraints and input saturation. The control objective is achieved by choosing a control Lyapunov function using joint error variables that are restricted to linear growth and furthermore by introducing a secant type barrier Lyapunov function for constraining the joint rate variables. The former is exploited to bind the forward propagation of the position errors, and the latter is utilized to impose hard bounds on the velocity. Effective input saturation is expressed, and neural networks are employed to tackle the uncertainty problem in the system dynamics. Feasibility conditions are formulated, and the optimal design parameters are obtained by solving the constrained optimization problem. We prove that under the proposed method, semi-global uniform ultimate boundedness of the closed-loop system can be guaranteed. Tracking errors meanwhile converge to small neighborhoods of the origin, and violations of predefined velocity constraints are avoided. Finally, numerical simulations are performed to verify the effectiveness of the theoretical developments.  相似文献   

20.
In consideration of target angular velocity uncertainty and external disturbance, a modified dynamic output feedback sliding mode control (DOFSMC) method is proposed for spacecraft autonomous hovering system without velocity measurements. As a stepping-stone, an additional dynamic compensator is introduced into the design of sliding surface, then an augmented system is reconstructed with the system uncertainty and external disturbance. Based on the linear matrix inequality (LMI), a sufficient condition is given, which guarantees the disturbance attenuation performance of sliding mode dynamics. By introducing an auxiliary variable, a modified version of adaptive sliding mode control (ASMC) law is designed, and the finite-time stability of sliding variable is established by the Lyapunov stability theory. Compared with other results, the proposed method is less conservative and can decrease the generated control input force significantly. Finally, two simulation examples are performed to validate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号