首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study the state feedback stabilization of dynamic-algebraic Boolean control networks (DABCNs). Using a novel normalization approach, we present necessary and sufficient conditions for the feedback stabilization of DABCNs, and a construction method for the corresponding feedback controllers is proposed. Reduced order feedback stabilization is also studied in this paper. Two examples are given to illustrate the obtained results.  相似文献   

2.
This paper investigates steady-state distributions of probabilistic Boolean networks via cascading aggregation. Under this approach, the problem is converted to computing least square solutions to several corresponding equations. Two necessary and sufficient conditions for the existence of the steady-state distributions for probabilistic Boolean networks are given firstly. Secondly, an algorithm for finding the steady-state distributions of probabilistic probabilistic Boolean networks is given. Finally, a numerical example is given to show the effectiveness of the proposed method.  相似文献   

3.
Boolean control networks are a kind of discrete logical dynamical systems. They are recently attracting considerable interest as computational models for genetic and cellular networks. In this paper, we investigate the cascading state-space decomposition problem for Boolean control networks by nested method. Firstly, based on the semi-tensor product of matrices, we obtain some algebraic conditions for the cascading state-space decomposition. Secondly, the multi-layer nested block matrix is defined, and two necessary and sufficient conditions are put forward based on this kind of matrices. Besides, a method is given to design controllers. Finally, an example is given to display the effectiveness of the method provided in this paper.  相似文献   

4.
Derived from a simplified intelligent traffic control system, sampled-data controllability and stabilizability of Boolean control networks are considered. Compared with the existing case of uniform (periodic) sampling in Boolean control networks, the nonuniform one is more general. Using linear span with integral coefficients, the distribution of sampling points can be obtained. Then by constructing novel systems, some necessary and sufficient conditions are proposed to determine sampled-data controllability and stabilizability. Finally, two illustrative examples, which are on apoptosis networks and traffic control systems, respectively, are worked out to show the effectiveness of the obtained results.  相似文献   

5.
This paper investigates the problem of stochastic stability and stabilization of stochastic Markovian jump delay systems (SMJDSs) based on LaSalle theorem. The time delays are assumed to be time-varying and numerous stochastic disturbances are considered. Attention is focused on the design of the mode-dependent state feedback controller for SMJDSs based on LaSalle theorem such that the closed-loop SMJDSs are almost surely asymptotically stable. The sufficient conditions for the solvability of the state feedback control problem are obtained in terms of linear matrix inequalities (LMIs). When the LMIs are feasible, the desired state feedback controller is also given. Two numerical examples including the vertical take-off and landing (VTOL) helicopter system are employed to demonstrate the effectiveness and usefulness of the method proposed in this paper  相似文献   

6.
This paper deals with the problem of non-fragile sampled-data stabilization analysis for a class of linear systems with probabilistic time-varying delays via new double integral inequality approach. Based on the auxiliary function-based integral inequality (AFBII) and with the help of some mathematical approaches, a new double integral inequality (NDII) is developed. Then, to demonstrate the merits of the proposed inequality, an appropriate Lyapunov–Krasovskii functional (LKF) is constructed with some augmented delay-dependent terms. By employing integral inequalities, an enhanced stability criterion for the concerned system model is derived in terms of linear matrix inequalities (LMIs). Finally, three benchmark illustrative examples are given to validate the effectiveness and advantages of the proposed results.  相似文献   

7.
This paper is concerned with the problem of global finite-time stabilization via output feedback for a class of switched stochastic nonlinear systems whose powers are dependent of the switching signal. The drift and diffusion terms satisfy the lower-triangular homogeneous growth condition. Based on adding a power integrator technique and the homogeneous domination idea, output-feedback controllers of all subsystems are constructed to achieve finite-time stability in probability of the closed-loop system. Distinct from the existing results on switched stochastic nonlinear systems, the delicate change of coordinates are introduced for dominating nonlinearities. Moreover, by incorporating a multiplicative design parameter into the coordinate transformations, the obtained control method can be extended to switched stochastic nonlinear systems with nonlinearities satisfying the upper-triangular homogeneous growth condition. The validity of the proposed control methods is demonstrated through two examples.  相似文献   

8.
To decrease the communication frequency between the controller and the actuator, this paper addresses the spacecraft attitude control problem by adopting the event-triggered strategy. First of all, a backstepping-based inverse optimal attitude control law is proposed, where both the virtual control law and the actual control law are respectively optimal with respect to certain cost functionals. Then, an event-triggered scheme is proposed to realize the obtained inverse optimal attitude control law. By designing the event triggering mechanism elaborately, it is guaranteed that the trivial solution of the closed-loop system is globally exponentially stable and there is no Zeno phenomenon in the closed-loop system. Further, the obtained event-triggered attitude control law is modified and extended to the more general case when the disturbance torque cannot be ignored. It is proved that all states of the closed-loop system are bounded, the attitude error can be made arbitrarily small ultimately by choosing appropriate design parameters and the Zeno phenomenon is excluded in the closed-loop system. In the proposed event-triggered attitude control approaches, the control signal transmitted from the controller to the actuator is only updated at the triggered time instant when the accumulated error exceeds the threshold defined elaborately. Simulation results show that by using the proposed event-triggered attitude control approach, the communication burden can be significantly reduced compared with the traditional spacecraft control schemes realized in the time-triggered way.  相似文献   

9.
In this paper, the problem of output feedback stabilization for high-order nonlinear systems with more general low-order and high-order nonlinearities multiplied by a polynomial-type output-dependent growth rate is studied. By constructing the novel Lyapunov function and observer, based on the homogeneous domination and adding a power integrator methods, an output feedback controller is developed to guarantee that the equilibrium of the closed-loop system is globally uniformly asymptotically stable.  相似文献   

10.
The exponential stabilization of BAM reaction-diffusion neural networks with mixed delays is discussed in this article. At first, a general pinning impulsive controller is introduced, in which the control functions are nonlinear and the pinning neurons are determined by reordering the state error. Next, based on the designed control protocol and the Lyapunov–Krasovskii functional approach, some novel and useful criteria, which depend on the diffusion coefficients and controlling parameters, are established to guarantee the global exponential stabilization of the considered neural networks. Finally, the effectiveness of the proposed control strategy is shown by two numerical examples.  相似文献   

11.
This paper studies the global sampled-data output feedback stabilization problem for a class of stochastic nonlinear systems. The considered system is in non-strict feedback form with unknown time-varying delay. A state observer is introduced to estimate the unmeasured states. With the help of the backstepping method, a linear sampled-data output feedback controller is constructed. By choosing an appropriate Lyapunov–Krasoviskii functional and an allowable sampling period, it is shown that the stochastic system can be globally asymptotically stabilized in the mean square sense under the developed control scheme. Finally, two examples are presented to verify the effectiveness of the designed control scheme.  相似文献   

12.
Using the algebraic state space representation (ASSR) method, this paper investigates the set stability and synchronization of Boolean networks with probabilistic time delays (PTDs). Firstly, an equivalent stochastic system is established for the Boolean network with PTDs by using the ASSR method. Secondly, based on the probabilistic state transition matrix of equivalent stochastic system, a necessary and sufficient condition is proposed for the set stability of Boolean networks with PTDs. Thirdly, as an application of set stability, the synchronization of coupled Boolean networks with PTDs is studied, and a necessary and sufficient condition is presented. Finally, an illustrative example is given to demonstrate the effectiveness of the obtained new results.  相似文献   

13.
This paper deals with observer-based control design for a class of switched discrete-time linear systems with parameter uncertainties. The main contribution of the paper is to propose a convenient way based on Finsler’s lemma to enhance the synthesis conditions, expressed in terms of Linear Matrix Inequalities (LMIs). Indeed, this judicious use of Finsler’s lemma provides additional decision variables, which render the LMIs less conservative and more general than all those existing in the literature for the same class of systems. Two numerical examples followed by a Monte Carlo evaluation are proposed to show the superiority of the proposed design technique.  相似文献   

14.
This paper is concerned with the finite-time and fixed-time synchronization of complex networks with discontinuous nodes dynamics. Firstly, under the framework of Filippov solution, a new theorem of finite-time and fixed-time stability is established for nonlinear systems with discontinuous right-hand sides by using mainly reduction to absurdity. Furthermore, for a class of discontinuous complex networks, a general control law is firstly designed. Under the unified control framework and the same conditions, the considered networks are ensured to achieve finite-time or fixed-time synchronization by only adjusting the value of a key control parameter. Based on the similar discussion, a unified control strategy is also provided to realize respectively asymptotical, exponential and finite-time synchronization of the addressed networks. Finally, the derived theoretical results are supported by an example with numerical simulations.  相似文献   

15.
In this paper, a distributed projection algorithm based on the subgradient method is presented to solve the distributed optimization problem with a constrained set over a directed multi-agent network, where the designed protocol is scaled by the left eigenvector associated with the weighted adjacency matrix. By using the property of the projection operation and nonnegative almost supermartingales, we give the convergence analysis of our algorithm and show that the optimal solution is the ultimate consensus state of all agents to be reached. A numerical simulation for a specific optimization problem is given to verify the effectiveness of our algorithm.  相似文献   

16.
This paper addresses the problem of local exponential stabilization via boundary feedback controllers for a class of nonlinear distributed parameter processes described by a scalar semi-linear parabolic partial differential equation (PDE). Both the domain-averaged measurement form and the boundary measurement form are considered. For the boundary measurement form, the collocated boundary measurement case and the non-collocated boundary measurement case are studied, respectively. For both domain-averaged measurement case and collocated boundary measurement case, a static output feedback controller is constructed. An observer-based output feedback controller is constructed for the non-collocated boundary measurement case. It is shown by the contraction semigroup theory and the Lyapunov’s direct method that the resulting closed-loop system has a unique classical solution and is locally exponentially stable under sufficient conditions given in term of linear matrix inequalities (LMIs). The estimation of domain of attraction is also discussed for the resulting closed-loop system in this paper. Finally, the effectiveness of the proposed control methods is illustrated by a numerical example.  相似文献   

17.
This paper investigates the state-feedback stabilization problem in the smooth case for a class of high-order nonlinear systems with time delays. By generalizing a novel radial basis function neural network (RBF NN) approximation approach to high-order nonlinear systems, we successfully remove the power order restriction and the growth conditions on system nonlinearities. It should be pointed out that the knowledge of NN nodes and weights does not need to be known a priori and operate on-line, and the adaptive parameter is only one. Furthermore, without imposing any growth assumptions on system nonlinearities, we construct a smooth adaptive state-feedback controller which guarantees the closed-loop system to be semi-globally uniformly ultimately bounded (SGUUB). Finally, we apply the proposed scheme to a single-link robot system and a numerical example to demonstrate the effectiveness of the controller.  相似文献   

18.
The consensus problem for networks of multiple agents consists in reaching an agreement between certain coordinates of interest using a distributed controller. It may be desirable that all the agents find a consensus at a given desired leader coordinate (Leader Follower Consensus Problem LFCP), or it may be only necessary that they agree at a certain coordinates value (Leaderless Consensus Problem LCP). Consensus has many practical applications in robot networks systems, where the interconnection of the agents may present variable time delays, hence rendering the stability analysis and control design more complex. Another problem that may arise is the possible lack of velocity measurements. In this work, a Proportional plus damping injection (P + d) controller together with a linear velocity observer is introduced. Our approach is able to solve both the LFCP and the LCP in networks of robots modeled as undirected weighted graphs with unknown asymmetric (bounded) variable time delays. Local (semi global) asymptotic stability is proven and simulation results are provided to test the performance of the proposed scheme.  相似文献   

19.
This paper studies the problem of adaptive neural network (NN) output-feedback control for a group of uncertain nonlinear multi-agent systems (MASs) from the viewpoint of cooperative learning. It is assumed that all MASs have identical unknown nonlinear dynamic models but carry out different periodic control tasks, i.e., each agent system has its own periodic reference trajectory. By establishing a network topology among systems, we propose a new consensus-based distributed cooperative learning (DCL) law for the unknown weights of radial basis function (RBF) neural networks appearing in output-feedback control laws. The main advantage of such a learning scheme is that all estimated weights converge to a small neighborhood of the optimal value over the union of all system estimated state orbits. Thus, the learned NN weights have better generalization ability than those obtained by traditional NN learning laws. Our control approach also guarantees the convergence of tracking errors and the stability of closed-loop system. Under the assumption that the network topology is undirected and connected, we give a strict proof by verifying the cooperative persisting excitation condition of RBF regression vectors. This condition is defined in our recent work and plays a key role in analyzing the convergence of adaptive parameters. Finally, two simulation examples are provided to verify the effectiveness and advantages of the control scheme proposed in this paper.  相似文献   

20.
This paper studies the static output-feedback control in a class of networked control systems. Different from the existing results, the transmission of control signals is based on a novel adaptive event-triggered scheme, where the adaptive thresholds depend on the dynamic error of the system rather than predetermined constants as the traditional ones. The amount of the releasing data is regulated by the adaptive thresholds that play an essential role in decision of whether releasing the sampled data or not. Through fully using the information on network-induced delay and introducing two adjusting parameters, an augmented Lyapunov–Krasovskii (L–K) functional is constructed. Especially, some novel Wirtinger-based integral inequalities are utilized to reconsider those previously ignored information, which can help reduce the conservatism. Furthermore, a novel constructive method is developed to obtain the controller gain by solving the achieved linear matrix inequalities (LMIs). Finally, three numerical examples are given to illustrate the efficiency of the presented results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号