首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the stability problem of linear time-varying delay system. Firstly, a double integral inequality based on the second-order derivative is proposed in this paper. Secondly, novel Lyapunov–Krasovskii functional consisting of integral terms based on the second-order derivative is constructed to enhance the feasible region of delay-dependent stability. Based on the two aspects, new delay-dependent stability criteria which guarantee the asymptotic stability of linear systems with time-varying delay are given in the form of linear matrix inequality (LMI). Finally, several numerical examples are given to show the advantages of the proposed methods.  相似文献   

2.
This paper is concerned with the stability analysis of linear systems with time-varying delays. First, by introducing the quadratic terms of time-varying delays and some integral vectors, a more suitable Lyapunov-Krasovskii functional (LKF) is constructed. Second, two new delay-dependent estimation methods are developed in the stability analysis of linear system with time-varying delays, which include a reciprocally convex matrix inequality and an integral inequality. More information about time-varying delays and more free matrices are introduced into the two estimation approaches, which play a key role for obtaining an accurate upper bound of the integral terms in time derivative of LKFs. Third, based on the novel LKFs and new estimation approaches, some less conservative criteria are derived in the form of linear matrix inequality (LMI). Finally, three numerical examples are applied to verify the advantages and effectiveness of the newly proposed methods.  相似文献   

3.
This paper considers a stability analysis problem for continuous-time Markovian jump linear systems under aperiodic samplings which are represented as Markovian jump linear systems with input delay. For the systems, this paper constructs a Lyapunov functional by utilizing a fragmented-delay state, which is defined between the last sampling instant and the present time, and a new state space model of the fragmented state. Based on the Lyapunov functional, a stability criterion is derived in terms of linear matrix inequalities by using reciprocally convex approach and integral inequality. Here, the reciprocally convex approach and integral inequality are associated not only with the current state, the delayed state, and the maximum-admissible delay state, but also with the fragmented-delay state. The simulation result shows the effectiveness of the proposed stability criterion.  相似文献   

4.
This paper discusses the problems of delay-dependent stability and stabilization of neutral saturating actuator systems with constant or time-varying delays. The problems of stabilization for neutral saturating actuator system with time-varying delay and parameter from the presented results, the condition obtained here does not need derivative information of the delay time and thus can be used to analyze the stabilization problem for a class of saturating actuator systems with time-varying delay, which is bounded but arbitrarily fast time-varying. Using the model transformation and quasi-convex optimization problem, we derive delay-dependent conditions for the stability of systems in terms of the linear matrix inequality. The stabilization conditions are formulated as linear matrix inequalities (LMIs) which can be solved by convex optimization algorithm. Moreover, the stability criteria are extended to design a stabilizing state feedback controller. Numerical examples show that the results obtained in this paper significantly improve the estimate of stability limit over some existing results reported previously in the literature.  相似文献   

5.
This paper deals with the problem of non-fragile sampled-data stabilization analysis for a class of linear systems with probabilistic time-varying delays via new double integral inequality approach. Based on the auxiliary function-based integral inequality (AFBII) and with the help of some mathematical approaches, a new double integral inequality (NDII) is developed. Then, to demonstrate the merits of the proposed inequality, an appropriate Lyapunov–Krasovskii functional (LKF) is constructed with some augmented delay-dependent terms. By employing integral inequalities, an enhanced stability criterion for the concerned system model is derived in terms of linear matrix inequalities (LMIs). Finally, three benchmark illustrative examples are given to validate the effectiveness and advantages of the proposed results.  相似文献   

6.
This paper considers the problem of dissipative filtering problem for singular Markov jump systems with time-varying delay and generally uncertain transition rates. Firstly, by tuning the improved integral inequality and Wirtinger-based integral inequalities, a sufficient condition is derived to guarantee that the considered system is regular, impulse-free, stochastically stable with the dissipation performance. Then, based on the derived condition, and applying linear matrix inequalities (LMIs) techniques, the filter is synthesized. Finally, some numerical examples are given to illustrate the effectiveness of the obtained theoretic results.  相似文献   

7.
This paper is concerned with the robust stability analysis for uncertain systems with interval time-varying delay. In order to make full use of the delay information, a novel Lyapunov–Krasovskii functional (LKF) containing single, double, triple and quadruple integral terms is introduced, and a triple-integral state variable is also used. Then, by using the Wirtinger-based single and double integral inequality, introducing some positive scalars, the derivative of the constructed LKF is estimated more accurately. As a result, some stability criteria are derived, which have less conservatism and decision variables. Numerical examples are also given to show the effectiveness of the proposed method.  相似文献   

8.
This paper investigates the problem of state bounding for linear positive singular discrete-time systems with unbounded time-varying delay. Our approach is based on the comparison principle and the spectral analysis of matrices. Using the proposed approach, we provide new sufficient conditions for the regularity, causality, positivity and the existence of the smallest ultimate upper bound of such systems. The conditions are given in terms of linear programming problems, which can be solved by LP optimal toolbox. Numerical examples with simulation are given to demonstrate the advantage and validity of the proposed theoretical results. The proposed method is the first trial in the state bounding problem of linear singular discrete-time systems with unbounded time-varying delays.  相似文献   

9.
This paper addresses the problem of exponential synchronization of switched genetic oscillators with time-varying delays. Switching parameters and three types of nonidentical time-varying delays, that is, the self-delay, the intercellular coupling delay, and the regulatory delay are taken into consideration in genetic oscillators. By utilizing the Kronecker product techniques and ‘delay-partition’ approach, a new Lyapunov–Krasovskii functional is proposed. Then, based on the average dwell time approach, Jensen?s integral inequality, and free-weighting matrix method, delay-dependent sufficient conditions are derived in terms of linear matrix inequalities (LMIs). These conditions guarantee the exponential synchronization of switched genetic oscillators with time-varying delays whose upper bounds of derivatives are known and unknown, respectively. A numerical example is presented to demonstrate the effectiveness of our results.  相似文献   

10.
The problem of the reachable set (RS) control of sliding mode control (SMC) for a class of singular systems with or without time-varying delay under zero initial conditions is studied. The purpose is to get an RS boundary containing all states of the system by designing an SMC. Firstly, singular systems with or without time-varying delay are decomposed into slow and fast subsystems by using the decomposition approach. Then, the augmented Lyapunov functional is built utilizing the decomposed state vector. The SMC is designed based on the exponential reaching criterion, resulting in the corresponding closed-loop control system (CLCS) construction. As a consequence, an RS criterion is constructed by employing the inequality scaling approach and the free-weighting matrix in conjunction with the linear matrix inequality (LMI). Finally, the validity and primacy of the results are provided by two numerical and practical examples.  相似文献   

11.
This paper is concerned with the problem of delay-dependent guaranteed cost control for uncertain two-dimensional (2-D) state delay systems described by the Fornasini and Marchesini (FM) second state-space model. Given a scalar α∈(0,1), a sufficient condition for the existence of delay-dependent guaranteed cost controllers is given in terms of a linear matrix inequality (LMI) based on a summation inequality for 2-D discrete systems. A convex optimization problem is proposed to design a state feedback controller stabilizing the 2-D state delay system as well as achieving the least guaranteed cost for the resulting closed-loop system. Finally, the simulation example of thermal processes is given to illustrate the effectiveness of the proposed result.  相似文献   

12.
This work is concerned with the problem of reachable set synthesis for a class of singular systems with time-varying delay via the adaptive event-triggered scheme. Compared with the static event-triggered mechanism, the adaptive event-triggered mechanism can save the communication resources more effectively. By virtue of Lyapunov stability theory, sufficient conditions are given to guarantee the stability of the closed-loop system and that the reachable set of the resulting system is bounded by the obtained ellipsoid. In addition, by using linear matrix inequality technique and free-weighting matrix method, the weighting matrix of event-triggered condition and proportional-derivative (P-D) feedback controller gains are obtained. The effectiveness and superiority of the developed control approach are substantiated by a numerical example and two practical examples.  相似文献   

13.
This work deals with the problem of absolute stability analysis for a class of uncertain Lur’e systems with time-varying delays. Novel delay-partitioning approaches are presented, which are dividing the variation interval of the delay into three subintervals. Some new augment Lyapunov–Krasovskii functionals (LKFs) are defined on each of the obtained subintervals which can efficiently make use of the information of the delay and relate to the reciprocally convex combination technique and the Wirtinger-based integral inequality method. Several improved delay-dependent criteria are derived in terms of the linear matrix inequalities (LMIs). The merit of the proposed criteria lies in their less conservativeness and lower numerical complexity than relative literature. Two numerical examples are included to illustrate the effectiveness and the improvement of the proposed method.  相似文献   

14.
This paper is concerned with the stability analysis of systems with two additive time-varying delay components in an improved delay interconnection Lyapunov–Krasovskii framework. At first, an augmented vector and some integral terms considering the additive delays information in a new way are introduced to the Lyapunov–Krasovskii functional (LKF), in which the information of the two upper bounds and the relationship between the two upper bounds and the upper bound of the total delay are both fully considered. Then, the obtained stability criterion shows advantage over the existing ones since not only an improved delay interconnection LKF is constructed but also some advanced techniques such as the free-matrix-based integral inequality and extended reciprocally convex matrix inequality are used to estimate the upper bound of the derivative of the proposed LKF. Finally, a numerical example is given to demonstrate the effectiveness and to show the superiority of the proposed method over existing results.  相似文献   

15.
In this paper, we design observer-based feedback control for a class of linear systems. The novelty of the paper comes from the consideration of an augmented weighted based integral inequality involving quadratic functions with an exponential term which is less conservative than the celebrated weighted integral inequality employed in the context of time-delay systems. By using appropriately chosen Lyapunov–Krasovskii functional (LKF), together with the derived integral inequality, a new sufficient condition for exponential stability in terms of linear matrix inequalities (LMIs) is proposed for the delayed linear systems with state feedback control. Finally, the applicability and superiority of the proposed theoretical results over the existing ones are analyzed in virtue of numerical examples.  相似文献   

16.
This paper focuses on the problem of robust H∞ filter design for uncertain systems with time-varying state and distributed delays. System uncertainties are considered as norm-bounded time-varying parametric uncertainties. The delays are assumed to be time-varying delays being differentiable uniformly bounded with delay-derivative bounded by a constant, which may be greater than one. A new delay-derivative-dependent approach of filter design for the systems is proposed. A novel Lyapunov-Krasovskii functional (LKF) is employed, and a tighter upper bound of its derivative is obtained by employing an inequality and using free-weighting matrices technique, then the proposed result has advantages over some existing results, in that it has less conservatism and it enlarges the application scope. An improved sufficient condition for the existence of such a filter is established in terms of linear matrix inequality (LMI). Finally, illustrative examples are given to show the effectiveness and reduced conservatism of the proposed method.  相似文献   

17.
This work investigates the improved stability conditions for linear systems with time-varying delays via various augmented approaches. Some augmented approaches are augmented Lyapunov-Krasovskii functionals, augmented zero equalities, and the augmented zero equality approach. At first, by constructing augmented Lyapunov-Krasovskii functionals including the state vectors which were not considered in the previous works and augmented zero equalities, a stability criterion is proposed in the forms of linear matrix inequalities. Through the proposed Lyapunov-Krasovskii functionals and an additional functional derived from the integral inequality, a slightly improved result is derived. The proposed results do not consider the increase in the computational complexity to achieve a larger delay bound. So, by applying the augmented zero equality approach, which is a method of grafting the proposed augmented zero equality proposed in Finsler Lemma, to the proposed result, an enhanced stability result was derived. Also, the computational complexity is reduced by appropriately adjusting any vector of the integral inequality utilized in the proposed criteria. By applying some numerical examples to the proposed conditions, the effectiveness and superiority of the results are confirmed.  相似文献   

18.
This paper is concerned with the problem of discrete-time event-triggered H control for networked cascade control systems (NCCSs) with time-varying network-induced delay. First of all, an event-triggered scheme is introduced to this system for reducing the unnecessary waste of limited network bandwidth resources. Considering the effect of time-varying delay, a new mathematical model for this system is constructed. In this paper, based on the model and Lyapunov functional method, the co-design method of event-triggered parameter, state feedback primary controller and secondary controller with H performance is derived via linear matrix inequality technique. To illustrate the effectiveness of the proposed method, a simulation example considering a main steam temperature cascade control system is given. The proposed method emphasizes the application in the corresponding industrial control systems, it can be found that this method is superior to the one in some existing references, and the provided example demonstrates the effectiveness of the co-design method in the networked cascade control systems with event-triggered scheme.  相似文献   

19.
This paper deals with the problem of a new delay-dependent robust stability criteria for a class of mixed neutral and Lur’e systems. The system has time-varying uncertainties, interval time-varying delays and sector-bounded nonlinearity. The proposed method is based on Lyapunov method, a delay-dependent criterion for asymptotic stability is established in terms of linear matrix inequality (LMI). Numerical examples show the effectiveness of the proposed method.  相似文献   

20.
This paper studies the robust stochastic stabilization problem for a class of fuzzy Markovian jump systems with time-varying delay and external disturbances via sliding mode control scheme. Based on the equivalent-input-disturbance (EID) approach, an online disturbance estimator is implemented to reject the unknown disturbance effect on the considered system. Specifically, to obtain exact EID estimation Luenberger fuzzy state observer and a low-pass filter incorporated to the closed-loop system. Moreover, novel fuzzy EID-based sliding mode control law is constructed to ensure the stability of the closed-loop system with satisfactory disturbance rejection performance. By employing Lyapunov stability theory and some integral inequalities, a new set of delay-dependent robust stability conditions is derived in terms of linear matrix inequalities (LMIs). The resulting LMI is used to find the gains of the state-feedback controller and the state observer a for the resulting closed-loop system. At last, numerical simulations based on the single-link arm robot model are provided to illustrate the proposed design technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号